博碩士論文 107521108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.149.247.106
姓名 王浩恩(Hao-En Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 n79頻段之氮化鎵連續F類功率放大器暨Ka頻帶之反F類砷化鎵功率放大器之研製
(Implementations on n79 Band GaN Continuous Class F Power Amplifier and Ka Band GaAs Inverse Class-F Power Amplifier)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用穩懋半導體公司(WINTM)所提供之0.25-µm GaN/SiC 製程以及0.15-µm InGaAs pHEMT 製程,分別進行n79頻段之連續F類功率放大器以及Ka頻帶之反F類功率放大器之設計。
第二章提出n79頻段之氮化鎵連續F類功率放大器,從挑選偏壓直流的方式,改善AM-AM與AM-PM的線性度,來緩解氮化鎵的軟性增益壓縮(soft gain compression)特性,輸出匹配電路利用連續F類技術的方式,達成基頻、二次諧波與三次諧波的匹配,來達到寬頻且高效率之功率放大器。量測結果顯示最佳傳輸增益為22.3 dB,3-dB頻寬為3.9 - 5.0 GHz,飽和輸出功率為 38.4 dBm,功率附加效率最高可達 40.7 %,晶片面積為4.75 (2.73 × 1.74) mm2。
第三章提出 Ka 頻帶之反F類砷化鎵功率放大器,透過級間匹配,擴展頻寬,達到較寬的頻寬,輸出匹配電路採用反F類架構,達到寬頻且高效率之功率放大器。量測結果顯示最佳功率增益為13.5 dB,3-dB頻寬為23.1 - 31.5 GHz,飽和輸出功率為 26.5 dBm,功率附加效率最高可達 33.3 %,晶片面積為0.98 (1.32 × 0.74) mm2。
摘要(英) The thesis developed two power amplifiers that were designed in WINTM 0.25-µm GaN/SiC, and 0.15-µm GaAs processes. The first design is a continuous Class-F mode power amplifier for n79 band operation in GaN/SiC process and the second one is an inverse Class-F mode power amplifier for Ka Band operation in 0.15 m GaAs pHEMT process.
Chapter 2 presents a continuous Class-F mode power amplifier for n79 band in GaN/SiC process. By selecting proper quiescent bias current, the nonlinearities, such as AM-AM and AM-PM distortions, can significantly be reduced. The amplifier achieved high efficiency and broadband performances by using continuous Class-F mode output matching network which is matched for the fundamental, second harmonic, and third harmonic impedances. The measurement results achieved a peak power gain of 22.3 dB, a 3-dB bandwidth from 3.9 to 5.0 GHz, a saturated output power of 38.4 dBm, and a peak power added efficiency up to 40.7 %. The chip area is 4.75 (2.73 × 1.74) mm2.
關鍵字(中) ★ 氮化鎵
★ 砷化鎵
★ 連續F類功率放大器
關鍵字(英)
論文目次 摘要 iii
Abstract iv
目錄 vii
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 N79頻段之氮化鎵連續F類功率放大器 3
2-1 氮化鎵功率放大器研究現況 3
2-2 連續F類模式技術介紹 4
2-3 n79 頻段之氮化鎵連續F類功率放大器 7
2-3-1 電路圖 7
2-3-2 電晶體特性評估 8
2-3-3 連續F類匹配網路 12
2-3-4 輸出匹配設計 14
2-3-5 電路模擬與量測結果 19
2-3-6 結果比較與討論 25
第三章 Ka頻帶之反F類砷化鎵功率放大器 27
3-1 毫米波功率放大器研究現況 27
3-2 Ka頻帶之反F類砷化鎵功率放大器設計 28
3-2-1 電路圖 28
3-2-2 電晶體特性評估 29
3-2-3 輸出匹配網路設計 32
3-2-4 電路模擬與量測結果 37
3-2-5 結果比較與討論 49
第四章 結論 53
4-1 總結 53
4-2 未來方向 53
參考文獻 54
參考文獻 [1] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A review of GaN on SiC high electron-mobility power transistors and MMICs," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1764-1783, June 2012.
[2] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[3] Y. S. Noh and I. B. Yom, "Highly integrated C-band GaN high power amplifier MMIC for phased array applications," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 6, pp. 406-408, June 2015.
[4] H. Xie, Y. J. Cheng, Y. R. Ding, L. Wang and Y. Fan, "A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1303-1306, Dec. 2021.
[5] G. Nikandish, E. Babakrpur and A. Medi, "A harmonic termination technique for single- and multi-band high-efficiency class-F MMIC power amplifiers," IEEE Trans. Microw Theory Techn., vol. 62, no. 5, pp. 1212-1220, May 2014.
[6] R. Joshi, M. -H. Liu and S. S. H. Hsu, "A high efficiency compact class F GaN MMIC power amplifier for 5G applications," in 2020 50th European Microwave Conference (EuMC), 2021, pp. 1103-1106.
[7] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[8] G. Nikandish, R. B. Staszewski and A. Zhu, "A broadband continuous class-F GaN MMIC PA using multi-resonance matching network," in 2019 14th European Microwave Integrated Circuits Conference (EuMIC), 2019, pp. 108-111.
[9] B. Liu, M. Mao, C. C. Boon, P. Choi, D. Khanna and E. A. Fitzgerald, "A fully integrated class-J GaN MMIC power amplifier for 5-GHz WLAN 802.11ax application," IEEE Microw. Wireless Compon. Lett., vol. 28, no. 5, pp. 434-436, May 2018.
[10] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microw. Wireless Compon Lett., vol. 19, no. 10, pp. 665-667, Oct. 2009.
[11] V. Carrubba et al., "On the extension of the continuous class-F mode power amplifier," IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1294-1303, May 2011
[12] P. Wright, J. Lees, J. Benedikt, P. J. Tasker and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3196-3204, Dec. 2009.
[13] I. Ju and J. D. Cressler, "An X-band inverse class-F SiGe HBT cascode power amplifier with harmonic-tuned output transformer," in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2017, pp. 390-393.
[14] S. M. A. Ali and S. M. R. Hasan, "A 38-GHz millimeter-wave double-stacked HBT class-F−1 high-gain power amplifier in 130-nm SiGe-BiCMOS," IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 3039-3044, July 2020.
[15] S. Y. Mortazavi and K. Koh, "Integrated inverse class-F silicon power amplifiers for high power efficiency at microwave and mm-wave," IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2420-2434, Oct. 2016.
[16] S. Y. Mortazavi and K. Koh, "A 38 GHz inverse class-F power amplifier with 38.5% peak PAE, 16.5 dB gain, and 50 mW Psat in 0.13-µm SiGe BiCMOS," in 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2015, pp. 211-214.
[17] Z. -H. Wang, C. -N. Chen and H. Wang, "A 30-40 GHz continuous class F−1 power amplifier with 35.8% peak PAE in 65 nm CMOS technology," in 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 178-180.
[18] S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi and D. Heo, "A 25–35 GHz neutralized continuous class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 2, pp. 834-847.
[19] Z. -J. Huang, B. -W. Huang, K. -Y. Kao and K. -Y. Lin, "A high-gain continuous class- F power amplifier in 90-nm CMOS for 5G communication," in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 177-179.
[20] K. Chen and D. Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-Band continuous class- F-1 /F mode transferring," IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 4107-4116, Dec. 2012.
[21 ] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 4211-4223,Dec. 2020.
[22] G. Lv, W. Chen, L. Chen and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 560-563.
[23] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[24] R. Quaglia, V. Camarchia, T. Jiang, M. Pirola, S. Donati Guerrieri and B. Loran, "K-band GaAs MMIC Doherty power amplifier for microwave radio with optimized driver," IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2518-2525, Nov. 2014.
[25] G. Lv, W. Chen and Z. Feng, "A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 808-811.
[26] D. P. Nguyen, B. L. Pham and A. Pham, "A compact Ka-band integrated Doherty amplifier with reconfigurable input network," IEEE Trans. Microw Theory Techn., vol. 67, no. 1, pp. 205-215, Jan. 2019.
[27] C. Ramella, V. Camarchia, A. Piacibello, M. Pirola and R. Quaglia, "Watt-level 21–25-GHz integrated Doherty power amplifier in GaAs technology," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 5, pp. 505-508, May 2021.
[28] J. Curtis, A. -V. Pham, M. Chirala, F. Aryanfar and Z. Pi, "A Ka-band Doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE," in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2013, pp. 349-352.
[29] H. Xie, Y. J. Cheng and Y. Fan, "A Ka-band watt-level high-efficiency integrated Doherty power amplifier in GaAs technology," in 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2021, pp. 287-289.
[30] D. P. Nguyen, X. -T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A wideband high efficiency Ka-band MMIC power amplifier for 5G wireless communications," in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5.
[31] K. -J. Chuang, K. P. Tang, Y. -H. Lin, T. -H. Chen, C. -S. Wu and T. -W. Huang, "An efficient and linear 24.4dBm Ka-band GaAs power amplifier for 5G communication," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2021, pp. 1-3.
[32] V. Qunaj and P. Reynaert, "A compact Ka-band transformer-coupled power amplifier for 5G in 0.15um GaAs," in 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2019, pp. 1-4.
[33] D. P. Nguyen and A. -V. Pham, "An ultra compact watt-level Ka-band stacked-FET power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 516-518, July 2016.
[34] H. Xie, Y. J. Cheng, Y. R. Ding, L. Wang and Y. Fan, "A C-band high-efficiency power amplifier MMIC with second-harmonic control in 0.25 μm GaN HEMT technology," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1303-1306, Dec. 2021.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2022-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明