博碩士論文 109521107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.222.106.205
姓名 張貽閔(Yi-Min Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代通訊之互補式金氧半導體F23類考畢茲壓控振盪器與變壓器回授轉導提昇壓控振盪器暨整數型鎖相迴路之研製
(Implementations on CMOS Class-F23 Colpitts Voltage Controlled Oscillator, Transformer Feedback Gm Boosting Voltage-Controlled Oscillator, and Integer-N Phase-Locked Loop for 5G Communications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文擬研究收發機中本地振盪源的相關電路,設計應用於第五代行動通訊(5th Generation Wireless Systems)之n79頻段本地振盪電路,本論文首先針對振盪條件進行介紹,接下來針對相位雜訊的成因進行分析與探討,並且針對flicker noise upconversion對相位雜訊的貢獻找出解決方法,實作並分析F類之優缺點,並針對F類直流功耗較大進行優化,接著使用變壓器回授實作壓控振盪器並分析其優缺點,針對直流功耗進一步優化,並進一步將變壓器回授轉導提升壓控振盪器接成整數型所相迴路,針對所相迴路各子電路進行分析,進一步對迴路進行整體迴路分析,實作出C頻段整數型所相迴路,最後實現低功耗、低相位雜訊的整數型鎖相迴路,論文一共實現三種電路,皆使用tsmcTM 0.18 μm互補式金氧半導體製程製作,內容如下所述:

1. F_23類考畢茲壓控振盪器
本電路實作具有低相位雜訊特性之F_23類控振盪器,使用變壓器耦合實作F_23類共振腔,並獨立主、副線圈並利用中心抽頭偏壓優化直流功耗,再利用考畢茲進一步實現更低的直流功耗,整體電路功耗為 5.3 – 4.5 mW,可調頻寬為 4.36 – 5.04 GHz (14.37%),相位雜訊在 1-MHz 偏移頻率下最低為−122.1 dBc/Hz,達到 FoM最高為−188.9 dBc/Hz,晶片面積為 0.737×1.1 mm2,整體電路換算之電路優化指標仍具競爭力。


2. 變壓器回授轉導提昇壓控振盪器
本電路實作具有低功耗、低相位雜訊,使用變壓器回授與轉導提升降低公耗與相位雜訊,整體電路功耗從7.14 ~ 7.32 mW,可調頻寬為 4.43 – 4.82 GHz (16.3%),相位雜訊在 1-MHz 偏移頻率下最低為−118.9 dBc/Hz,達到 FoM最高為−184.5 dBc/Hz,晶片面積為 0.694×1.23 mm2,本設計負電組效果較差,與多數文獻相比具有不錯的特性表現。

3. 利用變壓器回授轉導提昇壓控振盪器於C頻整數型鎖相迴路
本電路利用變壓器回授轉導提昇壓控振盪器,實現整數型C頻段鎖相迴路,於章節中完整介紹各子電路之用途及數學分析,整體電路功耗為33.9 mW,最後利用雜訊轉移函數計算整體系統之相位雜訊,得到的相位雜訊在1 MHz位移下為102.5 dBc/Hz,晶片面積為0.905×1.368 mm2。雖然尚未進行量測,但可獲得許多關於整數型鎖相迴路設計上之經驗。
摘要(英) This thesis investigates the designs of the local oscillators for the applications in n79 band of the fifth-generation mobile communication (5th Generation Wireless Systems), Firstly, we introduce the oscillation condition, analyze the causes of phase noise, find the solution for the contribution of flicker noise up conversion to phase noise, then implement the transformer feedback Gm Boosting Class-F voltage-controlled oscillator (VCO). The advantages and disadvantages of the this VCO were analyzed and optimized its performance, including phase noise and DC power consumption. Then, the designed VCO was used as a sub-circuit in a C-band integer-N phase locked loop. All circuits were implemented in tsmcTM 0.18-μm CMOS technology.

1. A Class-F_23 Colpitts Voltage Controlled Oscillator
Class-F_23 oscillator features the high power efficiency and low phase noise. In this work, we used transformer coupling technique to realize Class-F_23 LC-tank, and separate the center tape of the primary and secondary coils. The DC power consumption was optimized as low as 5.3 - 4.5 mW in this Class-F Colpitts VCO. The measured results are achieved as follow, the tuning range is 4.63 - 5.04 GHz (14.37 %), the lowest phase noise at 1-MHz offset frequency is -122.1 dBc/Hz which is correspondent to the FoM of -188.9 dBc/Hz. The chip size included pads is 0.737×1.1 mm2.

2. A Transformer Feedback Gm Boosting Voltage-Controlled Oscillator
The transformer feedback Gm boosting VCO features the low power consumption and low phase noise. In this work, we use transformer coupling technique to realize large output power, and adopt Gm boosting technique to reduce the power consumption. The DC power consumption was optimized as low as 7.14 -7.32 mW. The measurements achieve a tuning range of 4.43 - 4.82 GHz (16.3 %), and a phase noise at 1-MHz offset frequency of -118.9 dBc/Hz which is correspondent to the FoM of −184.5 dBc/Hz. The chip size included pads is 0.694×1.23 mm2.

3. A C-band Integer-N PLL with Transformer Feedback Gm Boosting Voltage-Controlled Oscillator
The PLL adopted the previously developed transformer feedback Gm boosting VCO to improve the phase noise performance. This analytical the mathematical model of the charge pump phase-locked loops (CPPLL). The noise contributions of each component in PLL were studied and compared. Meanwhile, we also calculate the overall phase noise of the PLL by using noise transfer function. The PLL consumed the DC power of 33.9 mW, The chip size included all pads is 0.905 × 1.368 mm2.
關鍵字(中) ★ 變壓器
★ F23類
★ 轉導提升
★ 考畢子
★ 壓控振盪器
關鍵字(英) ★ transformer
★ class F23
★ Gm boosted
★ colpitts
★ VCO
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 F23類考畢茲壓控振盪器 3
2-1 壓控振盪器導論 3
2-2 相位雜訊理論分析 4
2-3 尾濾波與二次諧波共振簡介 9
2-4 F23類壓控振盪器設計 10
2-5 量測與模擬結果 19
2-6 量結果與討論 25
第三章 變壓器回授轉導提昇壓控振盪器 26
3-1 變壓器回授轉導提昇壓控振盪器設計 26
3-2 量測與模擬結果 32
3-3 結果與討論 37
第四章 變壓器回授轉導提昇壓控振盪器於整數型鎖相迴路 39
4-1 鎖相迴路架構簡介 39
A. 壓控振盪器 40
B. 除頻器 41
C. 相位頻率偵測器 43
D. 充電汞 44
E. 迴路濾波器 45
4-2 鎖相迴路迴路分析 47
4-3 應用於C頻整數型鎖相迴路 52
4-3-1 壓控振盪器 53
4-3-2 電流模式邏輯除頻器 59
4-3-3 雙轉單緩衝放大器 61
4-3-4 真單一相位時脈除頻器 64
4-3-5 全擺幅緩衝器 66
4-3-6 相位頻率偵測器 67
4-3-7 充電汞 69
4-3-8 迴路濾波器 72
4-4 結果與討論 75
第五章 結論 79
5-1 結論 79
5-2 未來方向 79
參考文獻 80
參考文獻 [1] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[2] J. Groszkowski, "The interdependence of frequency variation and harmonic content, and the problem of constant-frequency oscillators," in Proceedings of the Institute of Radio Engineers, vol. 21, no. 7, pp. 958-981, July 1933.
[3] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[4] M. Shahmohammadi, M. Babaie and R. B. Staszewski, “A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016.
[5] D. Murphy, H. Darabi and H. Wu, “Implicit common-mode resonance in LC oscillators,” IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 812-821, March 2017.
[6] M. Babaie and R. B. Staszewski, “A Class-F CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120-3133, Dec. 2013.
[7] H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2917–2923, Jul. 2006.
[8] B.Razavi,“Amillimeter-wavecircuittechnique,” IEEE J.Solid-State Circuits, vol. 43, no. 9, pp. 2090–2098, Sep. 2008.
[9] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[10] A. Bevilacqua, F. P. Pavan, C. Sandner, A. Gerosa and A. Neviani, “Transformer-based dual-mode voltage-controlled oscillators,” IEEE Trans. Circuits Syst. II, vol. 54, no. 4, pp. 293-297, April 2007.
[11] A. Goel and H. Hashemi, “Frequency switching in dual-resonance oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 571-582, March 2007.
[12] K. Kwok and H. C. Luong, “ Ultra-low-voltage high-performance CMOS VCOs using transformer feedback” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp.652-660, March 2005.
[13] R.Hartley, “Oscillationgenerator,” U.S.Patent1,356,763,Oct.26,1920.
[14] B. Razavi, Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill, 2001.
[15] 張家祥,“以主動負載差動放大器為基礎的壓控振盪器與鎖相迴路之研究”碩士, 電子工程學系,崑山科技大學,台南市, 2010.
[16] R. Adler, “A study of locking phenomena in oscillator,” Proc. IRE, vol. 34, pp. 351-357, June 1946.
[17] 趙家祥,“X頻帶9.75/10.6GHz頻率合成器的設計與實現”碩士,應用電子科技學系,台灣師範大學,台北市, 2014.
[18] 張簡協,“運用0.18um CMOS製程研製2.4GHz可調式雙模態主動濾波器及全積體化頻率合成器”碩士, 電信工程所,陽明交通大學,新竹市,2012.
[19] H. Notani, H. Kondoh and Y. Matsuda, "A 622-MHz CMOS phase-locked loop with precharge-type phase frequency detector," IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 1994, pp. 129-130.
[20] D. Jeong, G. Boniello, D. A. Hodges and R. H. Katz, "Design of PLL based clock generation circuits," IEEE J.S.S.C., vol. 22, no.2, pp. 255-261, 1987.
[21] M. Babaie and R. B. Staszewski, “An ultra-low phase noise Class-F2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 679-692, March 2015.
[22] M. Shahmohammadi, M. Babaie and R. B. Staszewski, “Tuning range extension of a transformer-based qscillator through common-mode Colpitts resonance,” IEEE Trans. Circuits Syst. I, vol. 64, no. 4, pp. 836-846, April 2017.
[23] Y. Zhang et al., "A 5.8 GHz implicit Class-F VCO in 180-nm CMOS technology," IEEE Asia-Pacific Microwave Conference (APMC), pp. 1170-1172 , 2019.
[24] X. Liu, J. Jin, C. Yang, Y. Liu and J. Zhou, "A 12-GHz transformer feedback Class-F₂,₃ voltage-controlled oscillator using noise circulating with FoM of 190.5 dBc/Hz," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 11, pp. 1231-1234, Nov. 2021.
[25] H. Guo, Y. Chen, P. Mak and R. P. Martins, "A 0.083-mm2 25.2-to-29.5 GHz multi-LC-tank Class-F234 VCO with a 189.6-dBc/Hz FOM," in IEEE Solid-State Circuits Letters, vol. 1, no. 4, pp. 86-89, April 2018.
[26] Tai Nghia Nguyen, P. P. Pande and D. Heo, "A 64 GHz 5 mW low phase noise Gm-boosted colpitts CMOS VCO with self-switched biasing technique," IEEE MTT-S International Microwave Symposium , pp. 1-4, 2015.
[27] R. Levinger, O. Katz, J. Vovnoboy, R. Ben-Yishay and D. Elad, "A K-band low phase noise and high gain Gm boosted colpitts VCO for 76–81 GHz FMCW radar applications," IEEE MTT-S International Microwave Symposium (IMS) , pp. 1-4 , 2016.
[28] S. -H. Liu, C. -M. Hung, H. -R. Chuang and T. -H. Huang, "A W-band push-push VCO with Gm-boosted Colpitts topology in 90-nm CMOS rechnology," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 1-3 , 2021.
[29] W. -C. Lai, "Circuits design low-phase noise Colpitts VCO with Gm-boosting," IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1-2 , 2021.
[30] B. -E. Seow, M. -H. Lin, T. -H. Huang and H. -R. Chuang, "5-GHz Gm-boosted transformer cross-coupled current-reused colpitts VCO," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 1-3, 2016.
[31] J. Tsai, C. Hsu and C. Chao, "An X-band 9.75/10.6 GHz low-power phase-locked loop using 0.18-μm CMOS technology," European Microwave Integrated Circuits Conference (EuMIC), pp. 238-241,2015.
[32] J. -H. Cheng, M. -H. Wu, H. -T. Huang, Y. -M. Wu, J. -H. Tsai and T. -W. Huang, "A K-band phase-locked loop in 0.18 μm CMOS technology for vital sign detection radar," IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), pp. 1-3 , 2014.
[33] C. Yu, J. Tsai and T. Huang, "A low-power Ka-band frequency synthesizer with transformer feedback VCO embedded in 90-nm CMOS technology," IEEE International Wireless Symposium (IWS), pp. 1-4, 2013.
[34] K. Ha, J. Lee, S. Park and D. Baek, "A dual-mode signal generator using PLL for X-band radar sensor applications," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 4-6, 2017.
[35] 劉深淵,楊清淵,鎖相迴路,滄海書局,民國一百年.
[36] 林書佑,“互補型自我注入式四相位壓控振盪器暨X頻段壓控振盪器整合除頻器與X頻段鎖相迴路之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2017.
[37] 莊志成, “X頻段互補式金氧半導體四相位壓控振盪器與整數型鎖相迴路暨氮化鎵高功率及高效率壓控振盪器之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019.
[38] 詹凱鈞, “應用於C頻段之互補式金氧半導體低相位雜訊C類壓控振盪器暨變壓器耦合四相位壓控振盪器暨利用F類壓控振盪器於C頻段之整數型鎖相迴路暨X頻段III-V族高功率振盪器之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[39] 蔡承翰, “互補式金氧半導體C頻段F類與S頻段反F類壓控振盪器暨C頻段次取樣鎖相迴路之研製,” 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2020.
[40] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[41] W. -C. Lai, "Circuits Design Low-Phase Noise Colpitts VCO with Gm-Boosting," 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1-2, 2021.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2022-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明