博碩士論文 109521096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.135.192.215
姓名 范特華(Te-Hua Fan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代無線通訊之氮化鎵/砷化鎵積體被動元件多悌功率放大器與F類連續模式砷化鎵功率放大器暨互補式金氧半導體堆疊式功率放大器架構I/Q發射機之研製
(Implementations on GaN Doherty Power Amplifier with GaAs Integrated Passive Devices, Class-F Continuous Mode GaAs Power Amplifier, and CMOS I/Q Transmitter with Stacked Power Amplifier for 5G Communications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出採用穩懋半導體公司(WINTM)之0.25-µm GaN/SiC製程與砷化鎵積體被動元件製程製造C頻段之多悌功率放大器、穩懋半導體公司之0.15-µm InGaAs pHEMT製程製造Ka頻段之F類連續模式功率放大器與台灣積體電路製造公司(tsmcTM)之90 nm互補式金氧半導體製程製造C頻段之I/Q發射機。
第一顆晶片為氮化鎵與砷化鎵被動積體元件製造之C頻段兩級功率放大器,採用多悌負載調變電路架構,藉以提升功率放大器回退時效率,氮化鎵晶片尺寸為1.15 mm2,砷化鎵晶片尺寸為7.03 mm2,量測頻寬為3.6 - 4.5 GHz,最大傳輸增益為18.5 dB,測得飽和輸出功率為38.4 dBm、最大增益附加效率為32.8 % 與回退6 dB時增益附加效率達24.9 %。
第二顆晶片為砷化鎵之Ka頻段兩級功率放大器,輸出匹配網路採用F類連續模式,藉以提升電路整體效率,達到高效率與寬頻之性能,晶片面積為1.08 mm2,量測1 dB頻寬為25 - 30 GHz,最大傳輸增益為17.4 dB,測得飽和輸出功率為 27 dBm、1dB增益壓縮點之輸出功率為26.9 dBm與最大功率附加效率達48.8 %。
第三顆晶片為CMOS之C頻段I/Q發射機,操作於Sub-6GHz 之n79頻段,電路包含I/Q訊號產生器、被動式混頻器、基頻反向放大器與功率放大器,功率放大器使用堆疊式電晶體架構,晶片面積為2.1 mm2,於0 dBm本地震盪功率模擬得輸出功率為23.9 dBm、轉換增益為24.8 dB與整體電路功耗1.06瓦。
摘要(英) The thesis developed a C-band Doherty power amplifier(DPA) and a Ka-band Class-F continuous mode technique power amplifier applications in WINTM 0.25-µm GaN/SiC, GaAs integrated passive devices, and 0.15-µm GaAs process. The author also implemented a C-band I/Q (in-phase and quadrature components) transmitter with stacked power amplifier applications in tsmcTM 90-nm CMOS process.
The first chip presents a C-band two-stage DPA in GaN and GaAs integrated passive devices (IPD) process. The architecture is Doherty load modulation that improves back-off efficiency of PA. The chip size is 1.15 mm2 of GaN and 7.03 mm2 of GaAs IPD. The measured maximum of small-signal gain is 18.5 dB with the 3-dB bandwidth from 3.6 to 4.5 GHz, the output saturated power is 38.4 dBm, the peak power added efficiency (PAE) is 32.8%, and PAE at back-off 6 dB is 24.9%.
The second chip presents a Ka-band two-stage PA in GaAs process. The high efficiency and broadband performances are achieved by using Class-F continuous mode (CM) that is matched for fundamental to third harmonic impedances. The chip size is 1.08 mm2. The measured maximum small-signal gain is 17.4 dB with a 1-dB bandwidth from 25 to 30 GHz, an output saturated power of 27 dBm, an output 1-dB compression point (OP1dB) of 26.9 dBm, and a peak PAE of 48.8%.
The third chip implemented a C-band I/Q transmitter in CMOS process. The design includes an I/Q generator, a passive mixer, a baseband inverter, and a power amplifier using stacked transistor architecture. The chip size is 2.1 mm2. With the local oscillator power of 0 dBm, the simulation results show an output power of 23.9 dBm, a conversion gain of 24.8 dB, and a power consumption of 1.06 W.
關鍵字(中) ★ 功率放大器
★ I/Q發射機
★ 連續F類模式
★ 多悌功率放大器
★ 堆疊式架構
★ 氮化鎵
★ 砷化鎵
★ 互補式金氧半導體
★ 電流模態被動式混頻器
★ 第五代無線通訊
關鍵字(英) ★ Power amplifier
★ I/Q transmitter
★ Continuous F mode
★ Doherty PA
★ Stacked FET
★ GaN
★ GaAs
★ CMOS
★ Current mode passive mixer
★ 5th generation communications
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 3
第二章 氮化鎵/砷化鎵積體被動元件多悌功率放大器 4
2-1 研究現況 4
2-2 多悌放大器原理介紹 5
2-3 電路架構與設計 10
2-3-1 架構圖 10
2-3-2 電路圖 11
2-3-3 功率級電晶體 12
2-3-4 輸出匹配設計 14
2-3-5 輸入端功率分配器設計 17
2-4 電路模擬與量測結果 21
2-5 結果比較與討論 31
第三章 F類連續模式砷化鎵功率放大器 34
3-1 研究現況 34
3-2 連續模式技術介紹 35
3-3 電路架構與設計 39
3-3-1 電路圖 39
3-3-2 功率級電晶體 40
3-3-3 輸出匹配設計 43
3-4 電路模擬與量測結果 50
3-5 結果比較與討論 66
第四章 互補式金氧半導體堆疊式功率放大器架構I/Q發射機 70
4-1 研究現況 70
4-2 電路架構與設計原理 71
4-2-1 電流模態被動混頻器 73
4-2-2 基頻反向放大器 79
4-2-3 I/Q訊號產生器 82
4-2-4 堆疊式功率放大器 85
4-2-5 電路整體考量 99
4-3 電路模擬結果 102
4-4 結果與討論 107
第五章 結論 109
5-1 總結 109
5-2 未來方向 110
參考文獻 111
參考文獻 [1] W. H. Doherty, "A new high efficiency power amplifier for modulated waves," in Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936.
[2] J. Pang et al., "Broadband GaN MMIC Doherty power amplifier using continuous-mode combining for 5G Sub-6 GHz applications," IEEE Journal of Solid-State Circuits, vol. 57, no. 7, pp. 2143-2154, July 2022.
[3] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[4] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Unbalanced power amplifier: an architecture for broadband back-off efficiency enhancement," IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 367-381, Feb. 2021.
[5] C. H. Kim, S. Jee, G. Jo, K. Lee and B. Kim, "A 2.14-GHz GaN MMIC Doherty power amplifier for small-cell base stations," IEEE Microwave and Wireless Components Letters, vol. 24, no. 4, pp. 263-265, April 2014.
[6] S. Jee, J. Lee, B. Park, C. H. Kim and B. Kim, "GaN MMIC broadband Doherty power amplifier," in 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 603-605.
[7] C. H. Kim and B. Park, "Fully-integrated two-stage GaN MMIC Doherty power amplifier for LTE small cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, Nov. 2016.
[8] S. -H. Li, S. S. H. Hsu, J. Zhang and K. -C. Huang, "Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, Dec. 2018.
[9] G. Lv, W. Chen, L. Chen and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 560-563.
[10] S. Maroldt and M. Ercoli, "3.5-GHz ultra-compact GaN class-E integrated Doherty MMIC PA for 5G massive-MIMO base station applications," in 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017, pp. 196-199.
[11] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "Design and characterization of a 1.7–2.7 GHz quasi-MMIC Doherty power amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 771-773.
[12] M. Ayad, E. Byk, G. Neveux, M. Camiade and D. Barataud, "Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty power amplifier," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 114-117.
[13] R. Quaglia, M. D. Greene, M. J. Poulton and S. C. Cripps, "A 1.8–3.2-GHz Doherty power amplifier in Quasi-MMIC technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 5, pp. 345-347, May 2019.
[14] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009.
[15] B. Park et al., "Highly linear mm-Wave CMOS power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4535-4544, Dec. 2016.
[16] A. Sarkar and B. A. Floyd, "A 28-GHz harmonic-tuned power amplifier in 130-nm SiGe BiCMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 2, pp. 522-535, Feb. 2017.
[17] Z. -H. Wang, C. -N. Chen and H. Wang, "A 30-40 GHz continuous class F−1 power amplifier with 35.8% peak PAE in 65 nm CMOS technology," in 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 178-180.
[18] D. P. Nguyen, X. -T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A wideband high efficiency Ka-Band MMIC power amplifier for 5G wireless communications," in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5.
[19] V. Qunaj and P. Reynaert, "Compact transformer-based matching structures for Ka-Band power amplifiers," in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 914-916.
[20] P. Huang, Z. Tsai, K. Lin and H. Wang, "A 17–35 GHz broadband, high efficiency pHEMT power amplifier using synthesized transformer matching technique," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 112-119, Jan. 2012.
[21] C. F. Campbell, Ming-Yih Kao and S. Nayak, "High efficiency Ka-band power amplifier MMICs fabricated with a 0.15µm GaN on SiC HEMT process," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1-3.
[22] A. K. Kumaran, M. Pashaeifar, M. D’Avino, L. C. N. de Vreede and M. S. Alavi, "On-chip output stage design for a continuous class-F power amplifier," in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5.
[23] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, June 2012.
[24] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[25] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[26] C. Lin and H. Chang, "A broadband injection-locking class-E power amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[27] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於C/Ka 頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 110 年
[28] G. Lv, W. Chen and Z. Feng, "A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 808-811.
[29] K. -J. Chuang, K. P. Tang, Y. -H. Lin, T. -H. Chen, C. -S. Wu and T. -W. Huang, "An efficient and linear 24.4dBm Ka-Band GaAs power amplifier for 5G communication," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2021, pp. 1-3.
[30] H. Nam, W. Lee, J. Son and J. -D. Park, "A compact I/Q upconversion chain for a 5G wireless transmitter in 65-nm CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 30, no. 3, pp. 284-287, March 2020.
[31] D. Jeong, S. Lee, H. Lee and B. Kim, "Ultra-low power direct-conversion 16 QAM transmitter based on Doherty power amplifier," IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 528-530, July 2016.
[32] J. Kim, H. -S. Jo, K. -J. Lee, D. -H. Lee, D. -H. Choi and S. Kim, "A low-complexity I/Q imbalance calibration method for quadrature modulator," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 974-977, April 2019.
[33] M. Collados, H. Zhang, B. Tenbroek and H. Chang, "A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 4, pp. 726-731, April 2014.
[34] J. Enomoto et al., "AC-stacked power amplifier for 5G mobile handset applications in band n77," in 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2020, pp. 73-75.
[35] K. K. Sessou and N. M. Neihart, "An integrated 700–1200-MHz class-F PA With tunable harmonic terminations in 0.13-$mu$m CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1315-1323, April 2015.
[36] Y. Dong, L. Mao and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[37] Z. Lin, P. Mak and R. P. Martins, "A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4-GHz ZigBee/WPAN receiver exploiting a “Split-LNTA + 50% LO” topology in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 7, pp. 1525-1534, July 2014.
[38] X. Tang et al., "Design and analysis of a 28 GHz T/R front-end module in 22-nm FD-SOI CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 2841-2853, June 2021.
[39] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[40] S. Kulkarni, D. Zhao and P. Reynaert, "Design of an optimal layout polyphase filter for millimeter-wave quadrature LO generation," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 4, pp. 202-206, April 2013.
[41] R. Singh, S. Mondal and J. Paramesh, "A millimeter-wave receiver using a wideband low-noise amplifier with one-port coupled resonator loads," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 9, pp. 3794-3803, Sept. 2020.
[42] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[43] F. Wang and H. Wang, "A broadband linear ultra-compact mm-wave power amplifier with distributed-Balun output network: Analysis and Design," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[44] Y. Ko, S. P. Stapleton and R. Sobot, "Ku-band image rejection sliding-IF transmitter in 0.13-μm CMOS process," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 2091-2107, Aug. 2011.
[45] M. Camponeschi, A. Bevilacqua, M. Tiebout and A. Neviani, "A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars," IEEE Microwave and Wireless Components Letters, vol. 22, no. 3, pp. 141-143, March 2012.
[46] M. Liu, N. Ding and Y. Wang, "A C-band CMOS transmitter with a 6-bit phase shifter and Power amplifier for phased array systems," in 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), 2021, pp. 250-253.
[47] 宋韋旻,「應用於 C/X 頻段與 802.11ac 規格暨整合電流模態邏輯除頻器之低功耗寬頻 IQ 發射機」,國立中央大學,碩士論文,民國 106 年
指導教授 邱煥凱 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明