博碩士論文 109521052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.116.62.106
姓名 楊子葦(Zi-Wei Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以正弦波閘控模式操作砷化銦鎵/磷化銦單光子雪崩二極體實現光子數解析
(Photon Number Resolving with Sinusoidal Wave Gated InGaAs/InP Single Photon Avalanche Diodes)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析
★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討
★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析
★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體
★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 單光子雪崩二極體因具備最為靈敏的光偵測能力,成為光量子科學發展的重要技術,其中又以基於光纖通訊的量子密鑰傳輸以及量子電腦為當前不論在國防安全以及加密金融服務都亟需發展的量子科技,因此能偵測光通訊波段的InGaAs/InP單光子雪崩二極體遂成為了可攜輕便單光子偵測器的最佳選擇,其開發已充分商業化,並具有高量子效率和低暗計數的特性,可望能提升量子密鑰傳輸以及量子電腦的表現。除了單光子偵測,具備光子數解析能力的單光子偵測器係為上述量子科技中不可或缺的角色,其能確保量子密鑰傳輸免受光子數目分離之攻擊亦利於連續變數量子計算之開發。
三五族單光子雪崩二極體因缺陷多,常採用閘控模式來調節崩潰載子的產生以抑制由缺陷導致的二次脈衝效應,然而閘控模式所使用的脈衝波形會透過二極體接面電容耦合至輸出訊號與崩潰訊號相疊加,造成崩潰訊號難以辨識,往往需要增加偏壓來提高訊雜比,高偏壓操作將使得崩潰載子數量無窮多,遂無法得知入射光子數目多寡的資訊,為達成光子數目解析,需要縮短導通時間以調節崩潰載子數量,使得增益未達無窮大就被截止;但在短導通時間下,崩潰訊號變小,消除電容耦合訊號成了重要課題。因此,為了減少脈衝閘控模式產生的電容耦合訊號造成崩潰訊號辨識困難,文獻使用自差分電路將共模訊號相減,並且萃取微弱崩潰訊號;或是利用正弦波閘控模式搭配濾波技術來消除電容耦合訊號提高訊雜比,以利辨識崩潰訊號。
本論文採用正弦波閘控模式操作元件,與傳統脈衝閘控模式的設定不同,正弦波閘控的導通時間是由弦波中心頻率決定,因此為了縮短導通時間達成光子數目解析,將中心頻率提高至 300 MHz ,本實驗利用濾波技術將崩潰訊號的辨別水平降低到 10 mV,共模抑制比為 55.9 dB,成功辨識出微小的崩潰訊號,並進行元件在不同溫度下的單光子特性量測,進一步讓InGaAs/InP單光子雪崩二極體透過正弦波閘控實現光子數解析能力。
摘要(英) Single photon avalanche diode (SPAD) having the most sensitive capabilities becomes an essential technology for the development of photonic quantum science. Among them, fiber-based quantum key distribution (QKD) and quantum computer are the technologies that urgently need to be developed for their potential applications of national defense security and encrypted bank security. Therefore, InGaAs/InP single-photon avalanche diode capable of detecting the optical communication wavelength range becomes the best choice for a portable and lightweight single photon detector. It has already been commercialized and exhibits high quantum efficiency and low dark count, and thus is expected to improve the performance of quantum key distribution and quantum computers. In addition to single-photon click on/off detection, single photon detector with photon number resolving capability plays an indispensable role in the above quantum technologies. It prevents the quantum key distribution from the attack of photon number splitting and is also instrumental to the development of continuous-variable quantum computing.
Due to numerous defects in single photon avalanche diode of III‑V semiconductor, the gated mode is often used to regulate the generation of carriers to suppress the afterpulsing caused by the defects. However, the pulsed waveform is coupled to the output signal through the diode junction capacitance, which will be superimposed onto the avalanche signal, making the avalanche signal difficult to be identified. So, it is necessary to further increase the bias voltage to improve the signal-to-noise ratio (SNR), however, high bias operation will generate infinite avalanche carriers which hinders the realization of photon number resolving. To achieve photon number resolving, it is necessary to shorten the gate-on time to regulate the number of avalanche carriers, that is to quench the device before reaching infinite gain. However, the avalanche signal becomes smaller for shorter gate-on time. Thus, the elimination of the capacitive signal becomes an important issue. To discriminate avalanche signal from the capacitive signal in the pulsed gated mode, a self-differencing circuit is often used to subtract the common-mode capacitive signals; Or, sine wave gated mode with filtering technology can also be used to eliminate the capacitive signal to improve the signal-to-noise ratio for better discriminating the avalanche signals.
In this work, a sine wave gated mode is used for SPAD operation. Different from the setting of the traditional pulse gated mode, the gate-on time of the sine wave gated mode is determined by the center frequency of the sine wave. Which is to say, the gate-on time can be reduced simply by increasing the center frequency. We adopt a center frequency of 300 MHz for the full characterization of a commercial SPAD and to examine the capability of photon number resolving. In this work, a filter technique is used to reduce the discrimination level of avalanche signals to 10 mV and the common mode rejection ratio is 55.9 dB, succeeding to identify tiny avalanche signals. Based on sine wave gated scheme, we have fully characterized the commercial SPAD at various temperatures and demonstrated photon number resolving capability of InGaAs/InP SPAD.
關鍵字(中) ★ 單光子雪崩二極體
★ 正弦波閘控模式
★ 光子數解析
關鍵字(英) ★ Single Photon Avalanche Diodes
★ Sinusoidal Wave Gated
★ Photon Number Resolving
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 光偵測器的演進 4
1.3.1 光電倍增管(Photomultiplier tube) 4
1.3.2 光電二極體(Photodiode) 5
1.3.3 雪崩光電二極體(Avalanche photodiode) 6
1.3.4 單光子雪崩二極體(Single-photon avalanche diode) 7
1.4 光偵測器的應用 7
1.4.1 量子密鑰傳輸 (Quantum key distribution, QKD) 8
1.4.2 光子數解析(Photon number resolving, PNR) 10
第二章 文獻探討 12
2.1 單光子雪崩二極體的光子數解析技術 12
2.1.1 自差分電路(Self-differencing circuit) 13
2.1.2 光學自差分技術(Optical self-balancing) 14
2.1.3 諧波減法技術(Harmonic subtraction) 15
2.2 正弦波閘控模式 16
第三章 基本原理及元件介紹 24
3.1 雪崩二極體結構 24
3.2 崩潰機制 26
3.2.1 齊納崩潰(Zener breakdown) 27
3.2.2 雪崩崩潰(Avalanche breakdown) 27
3.3 材料特性 28
3.4 二極體操作模式及原理 31
3.5 截止電路(Quenching circuit) 33
3.5.1 自由運作電路 (Free-running mode circuit) 33
3.5.2 自我截止電路 (Self-quenching) 35
3.6 閘控模式 (Gated mode) 35
3.6.1 脈衝閘控模式(Pulse gated mode) 37
3.6.2 正弦波閘控模式(Sinusoidal wave gated mode) 39
3.7 元件量測參數 41
3.7.1 暗計數 (Dark count rate) 41
3.7.2 二次脈衝效應(Afterpulsing effect) 43
3.7.3 單光子偵測效率(Single-photon detection efficiency) 45
3.7.4 光響應度(Photo responsivity) 47
3.7.5 時基誤差(Timing jitter) 49
第四章 實驗方法及量測系統介紹 50
4.1 降溫系統 52
4.2 電流電壓特性量測 54
4.3 暗計數量測 55
4.4 光計數量測 56
4.5 脈衝閘控模式量測 58
4.6 正弦波閘控模式量測 58
4.7 二次脈衝效應量測 60
4.8 時基誤差量測 62
第五章 量測結果與討論 64
5.1 電流電壓特性 64
5.2 變頻率量測 67
5.2.1 有效閘控寬度 70
5.2.2 變頻率暗計數量測 71
5.2.3 變頻率光計數量測 72
5.3 變振幅量測 74
5.4 變溫量測 78
5.4.1 變溫暗計數量測 78
5.4.2 變溫光計數量測 79
5.4.3 變溫二次脈衝效應量測 80
5.4.4 變溫時基誤差量測 82
5.5 光子數解析量測 82
第六章 結論與未來展望 93
6.1 結論 93
6.2 未來展望 93
參考文獻 94
參考文獻 [1] Thomas Jennewein, Marco Barbieri and Andrew G,“White Single - photon device requirements for operating linear optics quantum computing outside the post-selection basis,” Journal of Modern Optics, 58:3-4, 276-287, (2011).
[2] Mansmann Raphael, Sipkens Timothy, Menser Jan, Daun Kyle, Dreier T. & Schulz Christof.“Detector calibration and measurement issues in multi-color time-resolved laser-induced incandescence.” Applied Physics B. (2019).
[3] Ma, Daniel, “Avalanche photodiodes arrays.” Master’s thesis. Rochester Institute of Technology.(2004).
[4] McIntyre R.J,“Multiplication noise in uniform avalanche diodes.” IEEE transaction on electron devices. (1966)
[5] Privitera, Simona et al. “Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays.” Sensors (Basel, Switzerland) vol. 8. (2008)
[6] Katsuhiko Nishida, Kenko Taguchi, and Yoshishige Matsumoto, “InGaAsP heterostructure avalanche photodiodes with high avalanche gain”, Appl. Phys. Lett. 35, 251-253 (1979)
[7] L. E. Tarof, D. G. Knight, K. E. Fox, C. J. Miner, N. Puetz, and H. B. Kim , “Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery”, Appl. Phys. Lett. 57, 670-672 (1990)
[8] K. Suhling, P. French, and D. Phillips, “Photochem. Photobiol. Time-resolved fluorescence microscopy.” Sci. 4, 13 (2005)
[9] S. Felekyan, R. Kühnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A. M. Seidel, “Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection.” Rev. Sci. Instr. 76, 083104 (2005).
[10] Scarani, Valerio, et al. “The security of practical quantum key distribution.” Reviews of modern physics 81.3 (2009).
[11] Stephen Wiesner. 1983. Conjugate coding. SIGACT News 15, 1 (Winter-Spring 1983), 78–88.
[12] Charles H. Bennett, “Quantum cryptography using any two nonorthogonal states”, Phys. Rev. Lett, volume 68 P3121-312 4 ,(1992)
[13] C. H. Bennett and G. Brassard. “Quantum cryptography: Public key distribution and coin tossing”. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175, page 8. New York, 1984.
[14] Stock, Erik. “Self-organized Quantum Dots for Single Photon Sources.” 10.14279/depositonce-2721. (2011).
[15] P. Shor, Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, (1994).
[16] Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt.Annalen der Physik. (1905).
[17] Z. Walton, A. V. Sergienko, M. Atatüre, B. E. A. Saleh, and M. C.Teicha, “Performance of photon-pair quantum key distribution systems,” J. Mod. Opt., vol. 48, no. 14, pp. 2055–2063, May (2001).

[18] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov , “Invited Review Article: Single-photon sources and detectors”, Review of Scientific Instruments 82, 071101 (2011)
[19] D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors” Phys. Rev. A 71, 061803–R (2005).
[20] A. Peacock, P. Verhoeve, N. Rando, A. van Dordrecht, B. G. Taylor, C. Erd, M. A.C. Perryman, R. Venn, J. Howlett, D. J. Goldie, J. Lumley, and M. Wallis, J. “On the detection of single optical photons with superconducting tunnel junction.” Appl. Phys. 81, 7641 (1997).
[21] E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron. 9, 1502 (2003).
[22] Eraerds P, Pomarico E, Zhang J, Sanguinetti B, Thew R et al. “32 bin near-infrared time-multiplexing detector with attojoule single-shot energy resolution.” Rev Sci Instrum (2010).
[23] Xiuliang Chen, E Wu, Lilin Xu, Yan Liang, Guang Wu, and Heping Zeng , “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates”, Appl. Phys. Lett. 95, 131118 (2009).
[24] B. E. Kardynal, Z. L. Yuan, and A. J. Shields,“An avalanche–photodiode-based photon-number-resolving detector,” Nature Photonics 2, 425–428 (2008).
[25] Guang Wu, Yi Jian, E Wu, and Heping Zeng, “Photon-number- resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782-18787 (2009).
[26] Alessandro Restelli, Joshua C. Bienfang, and Alan L. Migdall , “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013)
[27] Zhang J, Thew R, Barreiro C, Zbinden H.“Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes.” Appl Phys Lett; 95: 091103. (2009).
[28] Gisin N, Ribordy G, Tittel W, Zbinden H. “Quantum cryptography.” Rev Mod Phys; 74: 145. (2002).
[29] Zhang J, Thew R, Barreiro C, Zbinden H. et al.“Advances in InGaAs/InP single-photon detector systems for quantum communication.” Light Sci Appl 4, e286 (2015).
[30] Namekata N, Sasamori S, Inoue S. “800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. ” Opt Express (2006).
[31] N. Namekata, S. Adachi and S. Inoue, “Ultra-Low-Noise Sinusoidally Gated Avalanche Photodiode for High-Speed Single-Photon Detection at Telecommunication Wavelengths,” in IEEE Photonics Technology Letters, vol. 22, no. 8, pp. 529-531, April15, (2010).
[32] Y. Liang, M. Ren, E. Wu, J. Wang, G. Wu and H. Zeng, “High- Speed Photon-Number Resolving With Sinusoidally Gated Multipixel Photon Counters, ” IEEE Photonics Technology Letters, vol. 24, no. 20, pp. 1852-1855, Oct.15, (2012).
[33] Tada Akiko , Namekata Naoto , Inoue Shuichiro. “Saturated detection efficiency of single-photon detector based on an InGaAs /InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage.” Japanese Journal of Applied Physics. 59. (2020).
[34] Y. Liang et al., “Low-Timing-Jitter GHz-Gated InGaAs/InP Single-Photon Avalanche Photodiode for LIDAR,” Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-7, March-April (2022).
[35] K. N. Gebremicael, J. G. Rarity and P. Sibson, “Capacitive Response Signal Cancellation for Sine Wave Gated High-Speed Single Photon Avalanche Photodiode Detector,” Quantum Electronics, vol. 57, no. 4, pp. 1-5, Aug. (2021).
[36] Acerbi F, Anti M, Tosi A, Zappa F.“Design criteria for InGaAs/InP single-photon avalanche diode.” IEEE Photonics J (2013).
[37] Project of State of the Profession Consideration (APC) White Paper: All-Sky Near Infrared Space Astrometry. State of the Profession Considerations: Development of Scanning NIR Detectors for Astronomy - Scientific Figure on ResearchGate. (2020).
[38] C. Merckling, S. Jiang, Z. Liu, N. Waldron, G. Boccardi, R. Rooyackers, Z. Wang, B. Tian, M. Pantouvaki, N. Collaert, J. Van Campenhout, M. Heyns, D. Van Thourhout, W. Vandervorst, A. Thean, “Monolithic integration of III-V semiconductors by selective area growth on Si(001) substrate: Epitaxy challenges & applications.” ECS Transactions, Vol. 66, iss. 4,pp. 107 - 116 (2015).
[39] Pearsall, T.P.; Pollack, M.A. Tsang, W. T. (ed.). “Photodiodes for Optical Fiber Communication.” Semiconductor and Semimetals. Vol. 17. pp. 174–246.( 1985).
[40] H. Finkelstein, M. J. Hsu, S. Zlatanovic, S. Esener,“ Performance Trade-Offs in Single-Photon Avalanche Diode Miniaturization,” Review of Scientific Instruments. 78, 10 (2007).
[41] Jun Zhang, Rob Thew, Claudio Barreiro, and Hugo Zbinden , “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes”, Appl. Phys. Lett. 95, 091103 (2009).
[42] H. Finkelstein, M. J. Hsu, S. Zlatanovic, S. Esener,“ Performance Trade-Offs in Single-Photon Avalanche Diode Miniaturization, ” Review of Scientific Instruments. 78, 10, (2007).
[43] Jiang, X., Itzler, M.A., Ben-Michael, R., Slomkowski, K., Krainak, M.A., Wu, S. and Sun, X. “Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes,” Quantum Electronics 44, 3-11,(2008).
[44] A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986-2996 (1996).
[45] Huttner, B., Imoto, N., Gisin, N. & Mor, T. “Quantum cryptography with coherent states.” Phys. Rev. A 51,1863–1869(1995).
[46] Diamanti, E., Lo, HK., Qi, B. et al. “Practical challenges in quantum key distribution. ” npj Quantum Inf 2, 16025 (2016).
[47] Hwang, W.-Y. “Quantum key distribution with high loss: toward global secure communication.” Phys. Rev. Lett. 91, 057901 (2003).
指導教授 李依珊(Yi-Shan Lee) 審核日期 2022-9-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明