博碩士論文 109323053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.118.140.79
姓名 莊淨茹(Jing-Ru Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以可卸式PN接面對矽晶進行陽極氧化之研究
(Investigation of Anodization of Silicon by Detachable PN Junction)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於N 型矽的主要載流子是電子,施加電場後飄移速率為電洞三倍,因此經過陽極氧化產生量子侷限的奈米結構後非常適合製作矽光子元件。但由於N 型矽基板缺乏陽極氧化的要素¬—電洞,製作多孔矽極為困難,因此藉由疏水性晶圓鍵合技術將P 型矽作為中介電極,在N 型矽背面形成可拆卸式的PN 接面後再接電極,這將轉換N 型矽中的電洞流成主控電流,提高基板表面陽極氧化效率,製程結束後作為中介電極的P 型矽能輕易移除,使處理後的N 型矽保持乾淨且無污染。
本研究使用氫氟酸:酒精比例1:1,以固定電流500 mA進行電化學蝕刻30分鐘,並使用場發射掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、光致發光光譜儀(PL)做進一步分析,以不同摻雜濃度的P型矽晶圓輔助N型矽晶圓進行蝕刻,後續觀察N型矽晶圓所生成多孔矽之影響。
摘要(英) Since the main carriers of N-type silicon are electrons, and the drift rate is three times that of holes after applying an electric field, it is very suitable for the fabrication of silicon photonic devices after anodizing to produce quantum-confined nanostructures. However, due to the lack of anodes on N-type silicon substrates The element of oxidation—holes, is difficult to make porous silicon. Therefore, the hydrophobic wafer bonding technology uses the P-type silicon as the intermediate electrode. The detachable PN junction is formed on the back of the N-type silicon, and then the electrode is connected. This will convert the holes in the N-type silicon to flow into the main control current, improve the efficiency of anodization on the substrate surface, and the P-type silicon as an intermediary electrode can be easily removed after the process, keeping the processed N-type silicon clean and free of contamination.
In this study, electrochemical etching was performed at a fixed current of 500 mA for 30 min using a hydrofluoric acid: alcohol ratio of 1:1, and field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence spectrometer (PL) For further analysis, P-type silicon wafers with different doping concentrations were used to assist N-type silicon wafers for etching, and the effect of porous silicon generated by N-type silicon wafers was subsequently observed.
關鍵字(中) ★ PN接面
★ 疏水性晶圓鍵合
★ 陽極氧化
★ 多孔矽
關鍵字(英) ★ PN junction
★ hydrophobic wafer bonding
★ anodization
★ porous silicon
論文目次 摘要..............................................................................................................................................i
Abstract ......................................................................................................................................ii
誌謝...........................................................................................................................................iii
目錄............................................................................................................................................iv
圖目錄......................................................................................................................................vi
表目錄..................................................................................................................................... viii
第一章 緒論...............................................................................................................................1
1-1 研究背景.....................................................................................................................1
1-2 多孔矽製程.................................................................................................................3
1-2-1 乾式蝕刻法......................................................................................................3
1-2-2 濕式蝕刻法......................................................................................................3
1-2-3 電化學蝕刻法..................................................................................................4
1-3 研究動機與目的.........................................................................................................5
第二章 原理與文獻回顧...........................................................................................................6
2-1 多孔矽理論模型.........................................................................................................6
2-1-1 貝爾模型(The Beale Model)............................................................................6
2-1-2 擴散限制模型(The Diffusion-Limited Model)................................................7
2-1-3 量子模型(The Quantum Model)......................................................................8
2-2 多孔矽形成機制.........................................................................................................9
2-2-1 氫氧根(hydroxyl)為底之蝕刻機制.................................................................9
2-2-2 氫氟根(hydrofluoride)為底之蝕刻機制.......................................................10
2-2-3 蕭特基接面原理與電化學蝕刻關係............................................................11
2-2-4 PN接面與電化學蝕刻關係............................................................................13
第三章 實驗方法與步驟.........................................................................................................14
3-1 矽晶圓試片與清洗流程...........................................................................................14
3-2 電化學蝕刻材料及設備介紹...................................................................................17
3-3 分析儀器介紹...........................................................................................................18
3-4 實驗步驟...................................................................................................................20
第四章 結果與討論.................................................................................................................23
4-1 N型矽晶圓於日光燈及UV燈下觀察結果................................................................23
4-2 N型多孔矽FE-SEM表面及剖面觀察結果...............................................................26
4-3 N++型多孔矽TEM剖面觀察結果.............................................................................35
4-4 多孔矽光激發光譜(Photoluminescence, PL) ..........................................................37
第五章 結論.............................................................................................................................43
第六章 參考文獻.....................................................................................................................44
參考文獻 [1] Zhang, X. G., "Morphology and formation mechanisms of porous silicon", Journal of the Electrochemical Society, 151, C69-C80, 2004.
[2] Uhlir Jr, A., "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-347, 1956.
[3] Watanabe, Y., and T. Sakai., "Application of a thick anode film to semiconductor devices.", Rev. Elec. Commun. Lab, 19.7-8, pp. 899, 1971.
[4] Watanabe, Y., Arita, Y., Yokoyama, T., Igarashi, and Y., Electrochem, J., "Novel isolation technique by oxidation of porous silicon.", Journal of the Electrochemical Society, Vol. 120, 1973.
[5] Imai, K., and Unno, H., "FIPOS (full isolation by porous oxidized silicon) technology and its application to LSI′s., " IEEE Transactions on Electron Devices, 31.3, pp. 297-302, 1984.
[6] Yonehara, T., and Sakaguchi, K., "ELTRAN®; Novel SOI Wafer Technology.", "JSAP International, No.4, pp. 10-16, 2001.
[7] Salonen, J., and Mäkilä, E., "Thermally carbonized porous silicon and its recent applications.", Advanced Materials, Vol. 30, 2018.
[8] Canham, Leigh T. "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.", Applied physics letters 57.10, pp. 1046-1048, 1990.
[9] Koshida, N., and Koyama H., "Visible electroluminescence from porous silicon. ", Appl. Phys. Lett., 60, 347, 1992.
[10] Bright, V. M., Kolesar, E. S., Jr. and Sowders, D.M., "Reflection Characteristics of Porous Silicon Surfaces. ", Optical Engineering, 36, 1088, 1997.
[11] Canham, L. T., "Silicon quantum wire fabricated by electrochemical and chemical dissolution of wafers. ", Appl. Phys. Lett., 57, 1046, 1990.
[12] Cullis, A. G., and Canham, L. T., "Visible light emission due to quantum size effects in highly porous crystalline silicon. ", Nature, 353, 335, 1991.
[13] Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A., and Bomchil, G., "Photoluminescence of high porosity and of electrochemically oxidized porous.", Surface Science, 254, 195, 1991.
[14] Sagnes, I., Halimaoui, A., Vincent, G., and Badoz, P.A. , "Optical absorption evidence of a quantum size effect in porous silicon.", Appl. Phys. Lett, 62, 1155, 1993.
[15] Richter, A., Steiner, P., Kozlowski, F., and Lang, W., "Current-induced Light-Emission from a Porous Silicon Device. ", IEEE electron device letter, 12, 691, 1991.
[16] Lin, J.C., and Huang, K.M., "Microstructure Analysis and Photoelectronic Properties of Porous Silicon. ", Chinese Culture University Hwa Kang Journal of Engineering, 21, 2007.
[17] 施敏.梅凱瑞、林鴻志,半導體製程概論,國立交通大學出版社,144,2108。
[18] Chen, J., Cranton, W., and Fihn, M., "Wet Etching.", Handbook of Visual Display Technology, pp. 861-870, 2012.
[19] Burham, N., Hamzah, A. A., and Majlis, B. Y., "Self-adjusting electrochemical etching technique for producing nanoporous silicon membrane.", New Research on Silicon-Structure, Properties, Technology, 2017.
[20] Lehmann, V., and H. Föll. "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon.", Journal of the Electrochemical Society, 137.2, pp. 653-659, 1990.
[21] Smith R., and Collins S., "Porous silicon formation mechanisms.", Journal of Applied Physics, vol. 71, pp. R1-R22, 1992.
[22] Lehmann V., "The Physics of Macropore Formation in Low Doped n-Type Silicon.", Journal of the Electrochemical Society, vol. 140, pp. 2836-2843, 1993.
[23] Marso, M., Berger, M. G., Thönissen, M., Lüth, H., and Münder, H., "An extended quantum model for porous silicon formation.", Journal of the Electrochemical Society, vol. 142, pp. 615-620, 1995.
[24] Trucks, G. W., Raghavachari K., Higashi, G. S., and Chabal, Y. J., "Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation.", Physical Review Letters, 65, 504, 1990.
[25] Tong, Q. Y., Schmidt, E., Gösele, U., and Reiche, M., "Hydrophobic silicon wafer bonding.", Applied Physics Letters, 64, pp. 625-627, 1994.
[26] Lehmann, V., and Gösele, U., "Porous silicon: Quantum sponge structures grown via a self‐adjusting etching process.", Advanced Materials, 4, 114, 1992.
[27] Unagami, T., "Formation mechanism of porous silicon layer by anodization in HF solution.", Journal of the electrochemical society, 127.2, 476, 1980.
[28] Tung, R. T., "Schottky-barrier formation at single-crystal metal-semiconductor interfaces.", Physical review letters, 52, 461, 1984.
[29] Badel, X., Linnros, J., and Kleimann, P., "Electrochemical etching of n-type silicon based on carrier injection from a back side pn junction.", Electrochemical and Solid State Letters, 6, C79, 2003.
[30] Mooney, J., and Kambhampati, P., "Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra", pp. 3316-3318, 2013.
[31] Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., and Paillard, V., "Photoluminescence properties of silicon nanocrystals as a function of their size", Physical Review B, Vol 62, pp. 15942, 2000.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2022-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明