博碩士論文 109521140 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.222.36.16
姓名 張辰睿(Chen-Jui Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 K頻段數位式相位偏移器與可變增益放大器晶片之設計
(Design of K-Band Digital Phase Shifter and Variable Gain Amplifier Chips)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 相位陣列系統用於收發機前端,用於調整波束方向以達到波束成
形;不論是雷達系統或是第五代行動通訊,相位陣列均有不可替代之
地位。相位陣列通常由相位偏移器與可變增益放大器再根據發射或接
收端搭配功率放大器或低雜訊放大器所組成,達成一可調相位與振幅
之目標,因此不論是相位偏移器或是可變增益放大器都是相位陣列中
關鍵電路元件。本論文中,分別提出一數位式相位偏移器與數位式可
變增益放大器操作於 K 頻段,並且使用 TSMC 0.18-µm CMOS 製程
實現之。
第二章中,我們使用 TSMC 0.18-µm CMOS 製程實現一 K 頻段
五位元被動式相位偏移器,11.25◦、22.5◦、45◦、90◦相位偏移器為使
用傳輸線基準全通網路之全通式網路架構,180◦相位偏移器則使用
SPDT 架構實現。此晶片共分為兩個版本,由第一個版本量測結果中
我們發現 TSMC 0.18-µm CMOS 製程中 MIM 電容的 model 可能有多
估之寄生電感,因此我們於重新模擬中將 MIM 電容旁串聯負電感,
藉此扣掉多估的寄生效應。最後於第二個版本重新設計微調電容以修
正各式參數,重新設計結果顯示均方根相位誤差於 20.4 GHz 至 31.1
GHz 均低於 4◦;返回損耗於頻寬內皆低於 11.2 dB;植入損耗於頻寬
小於 17.1 dB;均方根振幅誤差小於 0.5 dB。
第三章中,我們使用 TSMC 0.18-µm CMOS 製程實現一 K 頻段
五位元可變增益放大器,以數位式切換偏壓達到不同狀態之增益,
電路由五路全差動疊接放大器架構並聯組成,輸入端使用 1:2 變壓
器匹配、輸出端則使用先串聯電容在並聯電感的 L 型匹配網路。本
電路主要應用於 ISM 頻段(24-24.5 GHz),模擬結果顯示於全開狀
態(s = 31)下輸入返回損耗皆大於 18.62 dB、輸出返回損耗皆大於
11.53 dB、增益皆大於 10.56 dB、相位變化為 37◦。量測結果顯示增
益峰值由 24 GHz 頻偏至 21.9 GHz,全開狀態下輸入返回損耗為 13.5
dB;輸出返回損耗為 5 dB;增益為 5.7 dB;相位變化為 25.7◦,整體
來說除了相位變化有降低外,其他數據量測均比模擬差,特別是增益
與輸出返回損耗。重新模擬時我們將忽略之走線帶入,包含輸入端、
輸出端與電晶體間之走線,帶入後的確修正往低頻偏之趨勢。為了使
返回損耗與增益貼合量測結果,我們於輸入端變壓器旁並聯電阻及輸
出端電感旁串聯電阻。重新模擬結果後增益峰值頻率為 21.8 GHz ,
於增益峰值頻率全開的狀態下,輸入返回損耗為 13 dB、輸出返回損
耗為 5 dB、增益為 5.7 dB、相位變化最大為 30◦,由此可知藉由重新
模擬除了相位變化還是與量測相比大約 4◦外,其他數據均貼合量測結
果。另外以本架構來說,於相位變化對頻率作圖發現,於增益峰值附
近都有較大之相位變化,值得後續討論與改善。
本論文中,我們實現了 K 頻段數位式相位偏移器與可變增益放
大器,以結論來說相位偏移器經過重新設計後以非常接近模擬,而可
變增益器經過重新模擬後也能貼合量測,利用以上經驗我們可以推估
TSMC 0.18-µm CMOS 製程於 K 頻段有哪些需要注意那些寄生效應,
使我們往後的電路模擬可以更加精準。
摘要(英) The phased array system is used in the front end of the transceiver to adjust the beam direction to achieve beamforming, whether it is a radar system or a fifth-generation mobile communication, the phased array has an irreplaceable position. The phase array is usually composed of a phase shifter and a variable gain amplifier, and then is matched with a power amplifier or a low noise amplifier according to the transmitting or receiving end to achieve an adjustable phase and amplitude. Variable gain amplifiers are key circuit elements in phased arrays. In this paper, a digital phase shifter and a digital variable gain amplifier are respectively proposed to operate in the K band, and implemented using TSMC 0.18-µm CMOS process.
In Chapter 2, we use TSMC 0.18-µm CMOS process to implement a K band five-bit passive phase shifter, 11.25◦, 22.5◦, 45◦, 90◦ phase shifter is an all-pass network architecture using the transmission line reference all-pass network, and the 180◦ phase shifter is implemented using the SPDT architecture. This chip is divided into two versions. From the measurement results of the first version, we found that the model of the MIM capacitor in the TSMC 0.18-µm CMOS process may overestimate the parasitic inductance, so we connected the MIM capacitor in series in the re-simulation. Negative inductance, thereby deducting the parasitic effect of overestimation. Finally, in the second version, the trimmer capacitors were redesigned to correct various parameters. The redesign results showed that the RMS phase error was lower than 4◦ from 20.4 GHz to 31.1 GHz, the return loss was lower than 11.2 dB, insertion loss is less than 17.1 dB in bandwidth, RMS amplitude error is less than 0.5 dB.
In Chapter 3, we use TSMC 0.18-µm CMOS process to implement a K frequency band five-bit variable gain amplifier, and digitally switch the bias voltage to achieve the gain of different states. The circuit consists of five fully differential stacks. The amplifier structure is composed of parallel connection, the input end uses a 1:2 transformer matching, and the output end uses an L-type matching network with a series capacitor and a parallel inductor. This circuit is mainly used in the ISM frequency band (24-24.5 GHz). The simulation results show that the input return loss is greater than 18.62 dB, the output return loss is greater than 11.53 dB, and the gain is greater than 10.56 dB, and the phase change is 37◦. The measurement results show that the peak gain is shifted from 24 GHz to 21.9 GHz, and the input return loss is 13.5 dB in the fully open state, the output return loss is 5 dB, the gain is 5.7 dB, the phase change is 25.7◦, overall Except for the reduction in phase variation, all other data measurements are worse than the simulation, especially the gain and output return loss. When re-simulating, we will bring in the neglected traces, including the traces between the input terminal, the output terminal and the transistor. After bringing in the traces, we will indeed correct the trend of low frequency deviation. In order to make the return loss and gain fit the measurement results, we put a resistor in parallel next to the transformer at the input and a series resistor next to the inductor at the output. After re-simulating the results, the gain peak frequency is 21.8 GHz. When the gain peak frequency is fully open, the input return loss is 13 dB, the output return loss is 5 dB, the gain is 5.7 dB, and the maximum phase change is 30◦. It can be seen that by re-simulating, except for the phase change, which is about 4◦ compared with the measurement, other data are consistent with the measurement results. In addition, according to the present architecture, the phase change is plotted against the frequency, and it is found that there is a large phase change near the gain peak, which is worthy of subsequent discussion and improvement.
In this paper, we implemented a K band digital phase shifter and variable gain amplifier, and concluded that the phase shifter was redesigned to be very close to analog, and the variable gain was re-simulated It can also be fitted and measured later. Using the above experience, we can estimate the parasitic effects of the TSMC 0.18-µm CMOS process in the K band, so that our future circuit simulation can be more accurate.
關鍵字(中) ★ 相位陣列
★ 相位偏移器
★ 可變增益放大器
關鍵字(英) ★ phased array
★ phase shifter
★ variable gain amplier
論文目次 目 錄
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 相位偏移量文獻回顧 . . . . . . . . . . . . . . . . . . 2
1.2.2 可變增益放大器文獻回顧 . . . . . . . . . . . . . . . 4
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章 使用傳輸線基準全通網路之 K 頻段五位元被動式相
位偏移器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 傳輸線基準全通網路理論分析 . . . . . . . . . . . . 8
2.3 電路設計 . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 11.25◦
25◦
45◦ 及 90◦相位偏移器 . . . . . . . . . . . 13
2.3.2 180◦ 相位偏移器 . . . . . . . . . . . . . . . . . . . . 18
2.4 模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 重新模擬 . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 重新設計模擬結果 . . . . . . . . . . . . . . . . . . . 46
2.8 重新設計量測結果 . . . . . . . . . . . . . . . . . . . 53
2.9 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . 59
第三章 24-GHz 數位式可變增益放大器 . . . . . . . . . . . . . 61
3.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 電路設計 . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 量測結果 . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 重新模擬 . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . 84
第四章 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
參考文獻 [1] H.-Y. Li, “Analog and digital phase shifters based on all-pass networks,” Master′s thesis.
[2] J.-H. Tsai, F.-M. Lin, and H. Xiao, “Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G application,” Electron. Lett., vol. 54, no. 20, pp. 1184–1185, Oct. 2018.
[3] W. Gao and D. Zhao, “K-band 360◦ passive vector modulator phase shifter with coupled line quadrature coupler and passive transistor array,” in 2021 IEEE MTT-S International Wireless Symposium (IWS),2021, pp. 1–3.
[4] J. S. Hayden and G. M. Rebeiz, “2-bit MEMS distributed X-band phase shifters,” IEEE Microwave Wireless Compon. Lett., vol. 10, no. 12, pp. 540–542, Nov. 2000.
[5] J.-J. Hung, Ku-to W-band silicon germanium RFIC and RF MEMS sub-systems. University of Michigan,2005.
[6] K. Miyaguchi, M. Hieda, K. Nakahra, H. Kurusu, M. Nii, M. Kasahara, T. Takagi, and S. Urasaki, “A ultra-broad reflection-type phase-shifter MMIC with series and parallel LC circuits,” IEEE Trans.Microwave Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[7] D. Kramer, “Ka-band P-I-N diode based digital phase shifter,” in 2018 13th European Microwave Integrated Circuits Conference (Eu-MIC), Sep. 2018, pp. 317–320.
[8] R. Garg and A. S. Natarajan, “A 28-GHz low-power phased-array receiver front-end with 360◦ RTPS phase shift range,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4703–4714, Jun. 2017.
[9] C. Campbell and S. Brown, “A compact 5-bit phase-shifter MMIC for K-band satellite communication systems,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 12, pp. 2652–2656, Dec. 2000.
[10] I. J. Bahl and D. Conway, “L-and S-Band compact octave bandwidth 4-bit MMIC phase shifters,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 2, Feb. 2008.
[11] D. Adler and R. Popovich, “Broadband switch-bit phase shifter using all-pass networks,” IEEE MTT-S International Microwave Symposium, vol. 1, pp. 265–268, Apr. 1991.
[12] M. Hangai, M. Hieda, N. Yunoue, Y. Sasaki, and M. Miyazaki, “S- and C-Band ultra-compact phase shifters based on all-pass network,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 1, pp. 41–47,Jan. 2010.
[13] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Transactions on Microwave Theory and Techniques , vol. 54, no. 1, pp. 294–301, Jan. 2006.
[14] Qun Xiao, “A compact L-band broadband 4-bit MMIC phase shifter with low phase error,” in Proceedings of 2011 European Microwave Integrated Circuits Conference, pp. 410–413, Oct. 2011.
[15] M. Meghdadi, M. Azizi, M. Kiani, A. Medi, and M.Atarodi, “A 6-bit CMOS phase shifter for S-band,” IEEE Transactions on Microwave Theory and Techniques , vol. 58, no. 12, pp. 3519–3526, Dec. 2010.
[16] C.-E. Hung, “Design of Ka-band digital phase shifter and variable gain amplifier chips,” Master′s thesis.
[17] P.-H. Lo, C.-C. Lin, H.-C. Kuo, and H.-R. Chuang, “A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity,” in Proc. 9th Eur. Radar Conf., Amsterdam, Netherlands, Oct./Nov. 2012, pp. 532–535.
[18] T.-Y. Chiu, Y. Wang, and H. Wang, “A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2, pp. 169–172, Feb. 2021.
[19] K.-C. Chang, Y. Wang, and H. Wang, “A broadband variable gain low noise ampli er covering 28/38 GHz bands with low phase varia- tion in 90-nm CMOS for 5G communications”, in 2021 IEEE MTT- S International Microwave Symposium (IMS), Nov. 2021, pp. 764–767.
[20] S. Lee, J. Park, and S. Hong, “A Ka-band phase compensated variable-gain CMOS low-noise amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 131–133, Feb. 2019.
[21] S. N. Ali, M. Aminul Hoque, S. Gopal, M. Chahardori, M. A. Mokri, and D. Heo, “A continually-stepped variable-gain LNA in 65-nm CMOS enabled by a tunable-transformer for mm-wave 5G communications,” in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 926–929.
[22] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, “A Ka-band variable-gain amplifier with low OP1dB variation for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 11, pp. 722–724, Nov. 2019.
[23] Y. Yi, D. Zhao, and X. You, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” in Proc. IEEE Radio frequency Integrated Circuits Symposium (RFIC), Jun. 2018, pp. 152–155.
[24] Z. Jiang, L. Zhang, Z. Liu, Z. Chen, H. Liu, Y. Wu, C. Zhao, and K. Kang, “A 33.5-39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift,” in Proc. Asia Pacific Microw. Conf. (APMC), Nov. 2017, pp. 1200–1202.
[21] Q. Zhang, C. Zhao, Y. Yu, Y. Wu, H. Liu, W. Che, Q. Xue, and K. Kang, “A Ka-band CMOS phase-invariant and ultralow gain er- ror variable gain ampli er with active cross-coupling neutralization and asymmetric capacitor techniques”, IEEE Trans. Microw. The- ory Techn., vol. 70, no. 1, pp. 85–100, Jan. 2022.
[22] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, “A Ka-band variable-gain amplifier with low OP1dB variation for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 11, pp. 722–724, Nov. 2019.
[23] Y. Yi, D. Zhao, and X. You, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” in Proc. IEEE Radio frequency Integrated Circuits Symposium (RFIC), Jun. 2018, pp. 152–155.
[24] Z. Jiang, L. Zhang, Z. Liu, Z. Chen, H. Liu, Y. Wu, C. Zhao, and K. Kang, “A 33.5-39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift,” in Proc. Asia Pacific Microw. Conf. (APMC), Nov. 2017
[25] Q. Zhang, C. Zhao, Y. Yu, Y. Wu, H. Liu, W. Che, Q. Xue, and K. Kang, “A Ka-band CMOS phase-invariant and ultralow gain er- ror variable gain ampli er with active cross-coupling neutralization and asymmetric capacitor techniques”, IEEE Trans. Microw. The- ory Techn., vol. 70, no. 1, pp. 85–100, Jan. 2022.
[26] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, “A 38 GHz low power variable gain LNA using PMOS current–steering device and Gm-boost technique,” in Proc. Asia-Pacific Microw. Conf. (APMC), Kyoto, Japan, Nov. 2018, pp. 654–656.
[27] T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu, and K. Kang, “A 20–43 GHz VGA with 21.5 dB gain tuning range and low phase variation for 5G communications in 65-nm CMOS”, in 2019 IEEE Radio frequency Integrated Circuits Symposium (RFIC), 2019, pp. 71–74.
[28] X. Tang and K. Mouthaan, “Design of large bandwidth phase shifters using common mode all-pass networks,” IEEE Microwave Wireless Components. Letter, vol. 22,no. 2, pp. 55–57, Feb 2012.
[29] J.-S. Fu, private communication, Aug 2022.
[30] A. Asoodeh and M. Atarodi, “A full 360◦ vector-sum phase shifter with very low RMS phase error over a wide bandwidth,” IEEE Trans. Microw.Theory Techn., vol. 60, no. 6, pp. 1626 1634, Jun. 2012.
[31] W.-J. Tseng, C.-S. Lin, Z.-M. Tsai, and H. Wang, “A miniature switching phase shifter in 0.18-μm CMOS,” in Proc. IEEE Asia Pacific Microwave Conference, pp. 2132−2135, Dec. 2009.
[32] X. Lv, T. Mo, and C. Yu, “A 28 GHz RF phase shifter with high phase resolution in 180-nm CMOS technology”, in 2020 IEEE Asia- Pacific Microwave Conference (APMC), 2020, pp. 351–353.
[33] J.-H. Tsai, T.-T. He, and W.-H. Lin, “ A K/Ka-band low RMS phase error 5-bit CMOS phase shifter”, in 2021 IEEE International Sym-posium on Radio-frequency Integration Technology (RFIT), 2021, pp. 1–3.
[34] S. Londhe and E. Socher, “28–38-GHz 6-bit compact passive phase shifter in 130-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1311–1314, Dec. 2021.
[35] M. Schindler and M. Miller, “A 3 bit K/Ka band MMIC phase shifter,” in IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers., 1988, pp. 95–98.
[36] E. V. P. Anjos, D. M. M.-P. Schreurs, G. A. E. Vandenbosch, and M. Geurts, “A 24 - 30 GHz ultra-compact
phase shifter using all-pass networks for 5G user equipment,” in 2020 IEEE/MTT-S Interna–tional Microwave Symposium (IMS), 2020, pp. 217–220.
[37] E. V. P. Anjos, D. Schreurs, G. A. E. Vandenbosch, and M. Geurts, “A compact 26.5–29.5-GHz LNA-phase-shifter combo with 360◦ con-tinuous phase tuning based on all-pass networks for millimeter-wave 5G,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 9, pp. 3927–3940, 2021.
[38] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Z. Huang, and F. Yu, “Design and performance of a wide-band Ka-band 5-b MMIC phase shifter,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 482–484, May 2017.
[39] J. G. Yang and K. Yang, “Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 151–153, Mar. 2011.
[40] Y.-Y. Lo, “Design of CMOS microwave cascode amplifier,” Master′s thesis.
[41] Y. Yoon, J. Kim, H. Kim, K. H. An, O. Lee, C.-H. Lee, and J. S. Kenney, “A dual-mode CMOS RF power
amplifier with integrated tunable matching network,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 77–88, Jan. 2012.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2022-9-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明