博碩士論文 109521158 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.227.190.194
姓名 何冠廷(Kuan-Ting Ho)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用Wilkinson功率合成器之3.5-GHz氮化鎵及Ka頻段砷化鎵功率放大器
(3.5-GHz GaN and Ka-Band GaAs Power Amplifiers Using Wilkinson Power Combiner)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 在本論文中,我們使用 WIN 0.25-µm GaN HEMT 製程設計應用於 3.5-GHz 之功率合成放大器,以及使用 WIN 0.15-µm GaAs pHEMT 製程來實現毫米波頻段之功率合成放大器。
在第二章,我們設計一個應用於 3.5-GHz 的功率合成放大器,操作頻率範圍為 3.3 GHz 至 3.8 GHz 。本電路是由兩個單路功率放大器藉由具阻抗轉換功能之 Wilkinson 功率分配器及功率合成器組成。我們使用 RO4003C 高頻電路板實現此 Wilkinson 功率分配器及功率結合器,並藉由鎊線與功率放大器做連結。首先我們先量測單路的功率放大器,量測結果顯示其小訊號在 3.3-3.8 GHz 的操作頻率範圍內,增益皆超過 14 dB,輸入返回損耗則大於 9.7 dB。接著我們將單路功率放大器與 Wilkinson 功率分配器與功率合成器組裝為功率合成放大器,其小訊號增益及輸入返回損耗分別大於 13.5 dB 及 17.5 dB ,在 3.5 GHz 下的大訊號量測,OP1dB 及在 OP1dB 下的 PAE 分別為 37.3 dBm 及 40.9% 。
在第三章,我們設計一個應用於毫米波頻段之功率合成放大器,操作頻率設計在 37 GHz 至 40 GHz,本電路亦使用具阻抗轉換功能之 Wilkinson 功率分配器及功率合成器,將兩個單路功率放大器進行功率的結合。由於本章節之操作頻率在毫米波頻段,因此我們以傳輸線的方式實現此電路。量測結果小訊號的響應往低頻偏移,在 26.8 GHz 的增益為 8.8 dB ,而輸入返回損耗及輸出返回損耗則是大於 7.2 dB 及 14.9 dB。我們選擇增益峰值高的頻率 26.8 GHz 量測大訊號,在 26.8 GHz 時, OP1dB 及在 OP1dB 下的 PAE 分別為 22.3 dBm 及 20%。
摘要(英) In this paper, we use the WIN 0.25-µm GaN HEMT (high electron mobility transistor) process to design a power combine amplifiers for 3.5 GHz and use the WIN 0.15-µm GaAs pHEMT (pseudomorphic high electron mobility transistors) process to realize power combine amplifiers in the millimeter wave frequency bands. In the second chapter of this paper, we design a power combine amplifier for 3.5-GHz operation in the 3.3 GHz to 3.8 GHz frequency range. This circuit is composed of two single-way power amplifiers with Wilkinson power divider and power combiner. The Wilkinson power divider and power combiner with the impedance transforming structure are used for power combining. The
Wilkinson power divider and power combiner are realized by using RO4003C high frequency two-layer board of off chip. It will finally connect with the power amplifier by way of pound wire. First we measure the single way power amplifier. The measurement results show that the small signal is within the operating frequency range of 3.3-3.8 GHz, the gain and input return loss are greater than 13.5 dB and 17.5 dB. Then we measure the power combine amplifier of this circuit. The measurement results show that the small signal is within the operating frequency range of 3.3-3.8 GHz, the gain and input return loss are greater than 13.5 dB and 17.5 dB, respectively, and the large signal is at 3.5 GHz, OP1dB and the following PAE are 37.3 dBm and 40.9%.
In the third chapter of this paper, we also use the WIN 0.15-µm GaAs pHEMT process to design a power amplifier applied in the 5G millimeter wave frequency band with an operating frequency range of 37 GHz to 40 GHz. This circuit also uses a Wilkinson power divider and a power combiner with impedance transforming structure, combine the power from the two single-way power amplifiers. Since the operating frequency of this chapter is in the millimeter wave band, we implement this circuit in the form of a transmission line. The measurement results show that the gain at 26.8 GHz is 8.8 dB, while the input return loss
and output return loss are greater than 7.2 dB and 14.9 dB. We choose the frequency with high gain peak at 26.8 GHz to measure large signals. At 26.8 GHz, the PAE of OP1dB and OP1dB are 20% and 22.3 dBm.
關鍵字(中) ★ 功率放大器 關鍵字(英) ★ Power Amplifier
論文目次 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . II
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . V
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . VII
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . XI
第一章 緒論 . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . 1
1.2 論文架構 . . . . . . . . . . . . . . . . . . . . . 1
第二章 應用於 3.5-GHz 氮化鎵功率合成放大器 . . . . . . . 3
2.1 簡介 . . . . . . . . . . . . . . . . . . . . . . 3
2.2 氮化鎵介紹 . . . . . . . . . . . . . . . . . . . . 3
2.3 電路模擬與實測 . . . . . . . . . . . . . . . . . . 4
2.3.1 電路設計與模擬 . . . . . . . . . . . . . . . . . 4
2.3.2 量測結果 . . . . . . . . . . . . . . . . . . . . 16
2.3.3 電路偵錯與重新模擬 . . . . . . . . . . . . . . . . 22
2.4 結果與討論 . . . . . . . . . . . . . . . . . . . . 27
第三章 應用在毫米波頻段之功率合成放大器 . . . . . . . . . 29
3.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 電路模擬 . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 電路設計與模擬 . . . . . . . . . . . . . . . . . 29
3.2.2 量測結果 . . . . . . . . . . . . . . . . . . . . 40
3.2.3 電路偵錯與重新模擬 . . . . . . . . . . . . . . . . 44
3.3 結果與討論 . . . . . . . . . . . . . . . . . . . . 47
第四章 結論 . . . . . . . . . . . . . . . . . . . . . . 49
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . 51
參考文獻 [1] F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic, and N. Sokal, “Power amplifiers and transmitters for RF and microwave,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 814-826, 2002.
[2] T. Qi and S. He, “Power up potential power amplifier technologies for 5G applications,” IEEE Microwave Magazine, vol. 20, no. 6, pp.89-101, 2019.
[3] X. Jiang, S. Ortiz, and A. Mortazawi, “A Ka-band power amplifier based on the traveling-wave power-dividing/combining slotted-waveguide
circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 2, pp. 633-639, 2004.
[4] V. Camarchia, R. Quaglia, A. Piacibello, D. P. Nguyen, H. Wang, and A.-V. Pham, “A review of technologies and design techniques of
millimeter-wave power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2957-2983, 2020.
[5] L.-Y. Chen, “Design of 3.5-GHz GaN power amplifiers and a millimeter-wave GaAs power amplifier,” 2021.
[6] E. M. Suijker, M. Sudow, M. Fagerlind, N. Rorsman, A. P. de Hek, and F. E. van Vliet, “GaN MMIC power amplifiers for S-band and X-band,” in 2008 38th European Microwave Conference, 2008, pp.297-300.
[7] K. Joshin, T. Kikkawa, S. Masuda, and K. Watanabe, “Outlook for GaN HEMT technology,” Fujitsu Sci. Tech. J, vol. 50, no. 1, pp.138-143, 2014.
[8] D. M. Pozar, “Microwave engineering,” 2011.
[9] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren, “2-6 GHz GaN MMIC power amplifiers for electronic warfare applications,” in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 83-86.
[10] A. Alizadeh, M. Yaghoobi, M. Meghdadi, A. Medi, and S. Kiaei, “A 10-W X-band class-F high-power amplifier in a 0.25-µm GaAs pHEMT technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 157-169, 2021.
[11] D.-W. Kim, “An output matching technique for a GaN distributed power amplifier MMIC using tapered drain shunt capacitors,” IEEE
Microwave and Wireless Components Letters, vol. 25, no. 9, pp.603-605, 2015.
[12] S.-H. Li, S. S. H. Hsu, J. Zhang, and K.-C. Huang, “Design of a compact GaN MMIC Doherty power amplifier and system level analysis
with X-parameters for 5G communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, 2018.
[13] K. Bansal, S. Chander, S. Gupta, and A. Basu, “Design and development of X-band GaN HEMT power amplifier,” in 2022 6th International Conference on Devices, Circuits and Systems (ICDCS), 2022, pp. 166-168.
[14] H.-Y. Huang, J.-J. Huang, J.-B. Cai, and H.-Y. Chang, “A 12-to-17 GHz power amplifier using T-model matching network in 0.25-µm GaN pHEMT technology,” pp. 980-982, 2019.
[15] A. Bessemoulin, P. Evans, and T. Fattorini, “38 GHz driver and power amplifier MMICs in surface mount packages,” in 2012 7th European Microwave Integrated Circuit Conference, 2012, pp. 457-460.
[16] M. Aust, A. Sharma, O. Fordham, R. Grundbacher, R. To, R. Tsai, and R. Lai, “A highly efficient Q-band MMIC 2.8 Watt output power amplifier based on 0.15/spl mu/m InGaAs/GaAs pHEMT process technology,” pp. 4 pp.-, 2005.
[17] K. T. Trinh, C.-H. Lin, H.-L. Kao, H.-C. Chiu, and N. C. Karmakar, “Design of two-gain-level amplifier for Ka-band phase shifters using 0.15-µm GaAs pHEMT Process,” in 2020 4th Australian Microwave Symposium (AMS), 2020, pp. 1-2.
[18] Q. Wang, M. Kao, S. Nayak, K. Kong, and C. Campbell, “A high power Q-band MMIC power amplifier based on dual-recess 0.15 /spl mu/m pHEMT,” pp. 133-136, 2004.
[19] H. Li, X. Liang, and K. Wang, “A Ka-band 1.5W 27.5% PAE MMIC power amplifier in 0.15µm E-mode GaAs pHEMT process co-analysis with thermal characteristic,” in 2019 IEEE 3rd International Conference on Circuits, Systems and Devices (ICCSD), 2019, pp. 69-73.
[20] L. Peng, J. Li, G. Zhang, S. Lin, and J. Chen, “Ka-band GaAs MMIC driver amplifier design,” in 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), 2020, pp. 287-290.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2022-9-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明