博碩士論文 109521165 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.226.98.208
姓名 王文辰(Wen-Chen Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用集總元件Wilkinson功率合成器之3.5-GHz氮化鎵功率放大器
(A 3.5-GHz GaN Power Amplifier with Lumped-Element Wilkinson Power Combiner)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 在第五代行動通訊網路的時代中,其目標為提高資料的傳輸速率、減少延遲時間,並提高資料容量與支援大規模通訊裝置連接,為達到次世代行動通訊系統的願景,不論是在實體層、媒體存取控制層、網路層、或應用層,都需要更先進的技術。

在本論文中,我們將設計 sub-6 GHz 之功率合成放大器,使用 WIN 0.25-µm GaN HEMT 製程來實現。在本論文第二章中,我們將使用 WIN 0.25-µm GaN HEMT 製程來設計一應用於 5G 小型基地台之 3.5-GHz AB 類功率合成放大器,本電路是由兩顆單路功率放大器藉由 Wilkinson 功率分配器及功率合成器做功率結合之功率合成放大器, 其中 Wilkinson 功率分配器及功率合成器我們使用 on chip 的方式實現,晶片面積為 1×2 mm2,此電路操作頻率範圍為 3.3 GHz 至 3.8 GHz 。功率合成放大器小訊號模擬結果顯示,其小訊號在 3.3 GHz 至 3.8 GHz 的操作頻率範圍內,增益及輸入返回損耗分別大於 11.9 dB 及 10.6 dB ,輸出返回損耗皆大於 7.6 dB 。而大訊號在 3.5 GHz 頻段下,OP1dB 及在 OP1dB 下的 PAE 分別為 38.2 dBm (6.6 W) 及 53 % ,而在 OP1dB 下的 DE 則為 56.3 %。

在本論文第三章中,我們將進行功率合成放大器量測與電路偵測及重新模擬,量測結果顯示在 3.3-3.8 GHz 的操作頻率範圍內,增益及輸入返回損耗分別大於 10.6 dB 及 12.4 dB ,輸出返回損耗皆大於 7.8 dB 。而在 3.5 GHz 下, OP1dB 及在 OP1dB 下的 PAE 分別為 35.1 dBm(3.2 W)及 33.1 % , 而在 OP1dB 下的 DE 則為 35.5 %,量測結果都有符合應用於 5G 小型基地台發射端主動式相位陣列之功率放大器性能目標。
摘要(英) The advent of the fifth-generation mobile communication network will provide greater data volume and higher. The transmission rate, shorter latency, and support for more communication device connections. In order to achieve the vision of the next-generation mobile communication system, whether in the physical layer, media access control layer, network layer, or application layer all require more advanced technology.

In this paper, we will design power amplifiers in the sub-6 GHz, respectively, using the WIN 0.25-µm GaN HEMT process to achieve. In the second chapter of this paper, we use the WIN 0.25-µm GaN HEMT process to design a 3.5-GHz power combine amplifier for 5G small-cell base stations, with an operating frequency range of 3.3 GHz to 3.8 GHz. This circuit is composed of two single-stage power amplifiers. The power divider and power combiner of the impedance Wilkinson transforming structure are used for power combining. The power divider and power combiner of impedance transforming Wilkinson are maded with on chip, and the chip area is 1×2 mm2. The simulation results of power combine amplifier show that the small signal is within the operating frequency range of 3.3--3.8 GHz, the gain and input return loss are greater than 11.9 dB and 10.6 dB, and the output return loss are greater than 7.6 dB respectively, and the large signal is at 3.5 GHz, OP1dB and OP1dB The following PAE are 38.2 dBm (6.6 W) and 53 %, OP1dB the following DE is 56.3 %

In the third chapter of this paper, we will perform power combine amplifier measurements and circuit detection and re-simulation. The measurement results show that the small signal of the single power amplifier is within the operating frequency range of 3.3--3.8 GHz, the gain and input return loss are respectively greater than 10.6 dB and 12.4 dB, and the large signal at 3.5 GHz, the PAE under OP1dB and OP1dB are 35.1 dBm (3.2 W) and 33.1 %, OP1dB the following DE is 35.5 % .The measurement results are in line with the power amplifier performance target of the active phased array at the transmitting end of the 5G small-cell base stations.
關鍵字(中) ★ 氮化鎵
★ sub-6
★ 功率合成放大器
★ 集總電路
★ 威爾金森功率分配器
關鍵字(英) ★ GaN
★ sub-6
★ power combine amplifier
★ lumped element
★ Wilkinson power divider
論文目次 摘要 I
Abstract II
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機及背景 1
1.2 sub-6 GHz 介紹 3
1.3 氮化鎵介紹 4
1.4 論文架構 5
第二章 使用集總元件Wilkinson功率合成器之 3.5-GHz 氮化
鎵功率放大器 7
2.1 簡介 7
2.2 電路設計與模擬 7
第三章 電路量測與重新模擬 25
3.1 簡介 25
3.2 量測結果 25
3.3 電路偵錯與重新模擬 30
3.4 結果與討論 33
第四章 結論 35
參考文獻 37
參考文獻 [1] L.-Y. Chen, “Design of 3.5-GHz GaN power amplifiers and a millimeter-wave GaAs power amplifier,” Master’s thesis, National Central University.
[2] E. M. Suijker, M. Sudow, M. Fagerlind, N. Rorsman, A. P. de Hek, and F. E. van Vliet, “GaN MMIC power amplifiers for S -band and X -band,” in 2008 38th European Microwave Conference, 2008, pp. 297–300.
[3] J. Nilsson, N. Billstrom, N. Rorsman, and P. Romanini, “S -band discrete and MMIC GaN power amplifiers,” in 2009 European Mi- crowave Integrated Circuits Conference (EuMIC), 2009, pp. 495– 498.
[4] V. Litovchenko, A. Grygoriev, A. Evtukh, O. Yilmazoglu, H. Hart- nagel, and D. Pavlidis, “Electron field emission from wide band-gap semiconductors (GaN),” in 2009 IEEE International Vacuum Elec- tronics Conference. IEEE, 2009, pp. 271–272.
[5] S. Shukla and J. Kitchen, “GaN-on-Si switched mode RF power amplifiers for non-constant envelope signals,” in 2017 IEEE Topi- cal Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), 2017, pp. 88–91.
[6] G. Torregrosa, J. Grajal, M. Peroni, A. Serino, A. Nanni, and A. Cetronio, “Large-signal modeling of power GaN HEMTs including thermal effects,” in 2007 European Microwave Integrated Circuit Conference, Nov 2007, pp. 36–39.
[7] N. Weerathunge, S. Chakraborty, and M. Heimlich, “A miniaturized Wilkinson power divider for MMIC applications,” in 2021 IEEE Asia-Pacific Microwave Conference (APMC), 2021, pp. 1–3.
[8] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren, “2-6 GHz GaN MMIC power amplifiers for electronic warfare applications,” in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 83–86.
[9] D.-W. Kim, “An output matching technique for a GaN distributed power amplifier MMIC using tapered drain shunt capacitors,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 603–605, Sep 2015.
[10] S.-H. Li, S. S. Hsu, J. Zhang, and K.-C. Huang, “Design of a com- pact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676–5684, Dec 2018.
[11] A. Seidel, J. Wagner, and F. Ellinger, “3.6 GHz asymmetric Doherty PA MMIC in 250 nm GaN for 5G applications,” in 2020 German Microwave Conference (GeMiC), 2020, pp. 1–4.
[12] S. Jee, J. Lee, J. Son, S. Kim, C. H. Kim, J. Moon, and B. Kim, “Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station,” IEEE Transactions on Microwave The- ory and Techniques, vol. 63, no. 9, pp. 2802–2810, 2015.
[13] L.-Y. Chen and J.-S. Fu, “A 3.5-GHz 2-W power amplifier in GaN HEMT technology,” in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2021, pp. 1–3.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2022-9-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明