姓名 |
謝中瑞(Chung-Jui Hsieh)
查詢紙本館藏 |
畢業系所 |
機械工程學系在職專班 |
論文名稱 |
物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放)
|
摘要(中) |
射出成型一直是產品量化最有利的生產方式之一,然而為了提高產品的機械強度、剛性、耐腐蝕、耐磨性等、同時又需要重量輕等需求,很多時候會改用玻璃纖維強化塑膠(FRP, Fiber-reinforced plastic)來達到要求,也就是本研究要被測試的材料尼龍+50%玻璃纖維(PA66+50%GF)。
為了使玻璃纖維強化塑膠在射出後達到尺寸精度、幾何公差、表面粗糙度、組裝需求等,一般都需要使用電腦數值控制工具機(Computer Numerical Control,CNC)進行二次加工來達到要求。
但由於材料本身的不連續性、不均勻性、纖維容易碎化等,會使刀具在加工時極具磨蝕性,使刀具耗損量增大,影響生產量化的穩定,進而增加製造成本,因此,選擇適合的刀具及鍍層是加工廠非常重要的課題。
本研究使用KYOCERA的刀片及物理氣相沉積(Physical Vapor Deposition,PVD)蒸鍍方式將四種鍍層鍍在刀片上,分別為: 類金剛石(DLC)、氮化高鋁鈦(AlTiN)、氮化鋁鈦矽(AlTiSiN)、氮化鋁鈦鋯矽(AlTiZrSiN),並用三組加工參數對PA66+50%GF的射出成型產品進行車削,並記錄刀腹磨耗(Flank wear),找出適合加工PA66+50%GF的刀具鍍層。
結果顯示DLC鍍層因為摩擦係數低、表面較光滑,在三組實驗數據,都顯示有較長的切削長度和切削時間,即使Vc值提高,仍保有較長的刀具壽命,因此,若以刀具壽命來看,會比較推薦DLC鍍層,但DLC鍍層費用較高,需評估在成本管控上,是否仍保有競爭優勢。 |
摘要(英) |
Injection molding has always been one of the most favorable production methods for product quantification. However, in order to improve the mechanical strength, rigidity, corrosion resistance, wear resistance, etc. of products, and at the same time need to be light in weight, glass fiber reinforced plastics are often used instead. FRP, Fiber-reinforced plastic) to meet the requirements, that is, the material to be tested in this study is nylon + 50% glass fiber (PA66 + 50% GF).
In order to make the glass fiber reinforced plastic meet the dimensional accuracy, geometric tolerance, surface roughness, assembly requirements, etc. after injection, it is generally necessary to use Computer Numerical Control (CNC) for secondary processing to meet the requirements.
However, due to the discontinuity and inhomogeneity of the material itself, the fibers are easily fragmented, etc., the tool will be extremely abrasive during processing, which will increase the tool wear, affect the stability of production quantification, and increase the manufacturing cost. Therefore, Choosing the right tool and coating is a very important issue for the processing plant.
In this study, KYOCERA′s blade and Physical Vapor Deposition (PVD) evaporation method were used to coat four kinds of coatings on the blade, namely: diamond-like carbon (DLC), high-aluminum titanium nitride (AlTiN), nitrided Aluminum-titanium-silicon (AlTiSiN), aluminum-titanium-zirconium-silicon nitride (AlTiZrSiN), and three sets of processing parameters are used to turn PA66+50%GF injection molded products, and record the flank wear to find out the suitable processing PA66 +50% GF tool coating.
The results show that the DLC coating has a long cutting length and cutting time in the three sets of experimental data because of its low friction coefficient and smooth surface. Even if the Vc value is increased, it still maintains a long tool life.
Therefore, if the tool life is From the point of view, DLC coating will be recommended, but the cost of DLC coating is relatively high, and it is necessary to pay attention to whether it can still maintain a competitive advantage in total cost control. |
關鍵字(中) |
★ 刀腹磨損 ★ 尼龍+50%玻璃纖維 ★ 物理蒸鍍 |
關鍵字(英) |
|
論文目次 |
摘要 iv
Abstract vi
致謝 …vii
目錄 ix
圖目錄 xii
表目錄 ..xv
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究架構 3
第二章 文獻回顧 4
2-1 玻璃纖維強化塑膠 4
2-1-1 材料簡介 4
2-1-2 機械性能 5
2-2 薄膜沉積製程.……………………………………....6
2-2-1 化學氣相沉積(Chemical Vapor Deposition,CVD)………………………………………….6
2-2-2 物理氣相沉積(Physical Vapor Deposition,PVD)………………………………………….7
2-3 刀具壽命理論 10
2-4 磨耗原理 11
2-4-1疲勞磨耗 11
2-4-2黏著磨耗 11
2-4-3 刮除磨耗 12
2-4-4 擴散磨耗 12
第三章 實驗規劃與設備介紹 13
3-1 實驗設備介紹 13
3-1-1 射出成型機 13
3-1-2 CNC 車床 14
3-1-3 影像量測儀 15
3-1-4 PVD鍍膜設備 16
3-1-5 鍍膜檢測設備 17
3-1-6 切削刀具 20
3-1-7 切削刀片 20
3-1-8 摩擦測試儀 21
3-2 實驗定義 22
3-2-1 射出成型參數 23
3-2-2 程式設計及切削參數 25
第四章:結果與討論 28
4-1 鍍層檢測 28
4-1-1 鍍層膜厚檢測結果 28
4-1-2 EDS檢測結果 30
4-1-3 摩擦測試檢測結果 34
4-2 切削實驗結果 36
第五章:結論 52
5-1 結論 52
5-2 未來研究方向 53
參考文獻 54 |
參考文獻 |
[1] L. R. Silva , J. Paulo Davim , António Festas , A.M.Abrão , “Machinability aspects concerning micro-turning of PA66-GF30-reinforced polyamide” , The International Journal of Advanced Manufacturing Technology (2009) 41:839-845 , 3 June 2008
[2] KYOCERA網站。取自https://taiwan.kyocera.com/,access at 20220213
[3] 張富貴,鄭淑芳,「玻璃纖維強化塑膠(FRP)製品製造作業勞工有害物暴露評估研究」,勞動部勞動及職業安全衛生研究所,pp.23,2014年3月
[4] 瑞士遠東EMS網站。取自https://www.emsgrivory.com/cn/,access at 20220311
[5] O. Knotek and T. Leyendecker , “On the structure of (Ti, Al)N-PVD coatings” , Journal of Solid State Chemistry , vol 70 , lssue 2 , pp.318-322 , October 1987.
[6] 張育唐,陳藹然,「化學氣相沉積法(Chemical Vapor Deposition)」,科學Online,國立臺灣大學,2011年11月22日。取自https://highscope.ch.ntu.edu.tw/wordpress/?p=40948
[7] 胡鵬飛,張華,「刀具硬質塗層的發展現狀及展望」,洛陽理工學院,2009年
[8] 何鎮揚,葉名倉,「物理氣相沈積法(Physical Vapor Deposition,PVD)」,科學Online,國立臺灣大學,2009年7月29日。取自https://highscope.ch.ntu.edu.tw/wordpress/?p=2956
[9] 陳寶清,真空表面處理工學,表面工業雜誌社,傳勝出版社,台北市,pp.28-47,1992年
[10] 陳寶清,真空表面處理工學,表面工業雜誌社,傳勝出版社,台北市,pp.75-108,1992年
[11] 王福貞,聞立時,表面沉積技術,三版,機械工業出版社,北京,pp.128-135,1989年
[12] 趙海波,高見,周彤,「歐洲刀具塗層最新狀況及發展模式」,成都工具研究所,2005年
[13] Thakur and Gangopadhyay , “Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825” , Tribology International , vol 102 , pp.198-212 , October 2016.
[14] Ernest Rabinowicz , Friction and wear of materials , Wiley-Interscience , Hoboken New Jersey , 1 July 1995.
[15] Jie Gu , Gary Barber , Simon Tung , Ren-Jyh Gu , “Tool life and wear mechanism of uncoated and coated milling inserts” , Wear , Vol 225-229 , pp.273-284 , April 1999.
[16] 程泰機械網站。取自https://goodwaycnc.com/,access at 20220414
[17] 台濠科技網站。取自
http://www.carmar-tech.com/index_tw.php,access at 20220422
[18] 瑞士PLATIT網站。取自https://www.platit.com/zh-hans/,access at 20220502 |
指導教授 |
傅尹坤
|
審核日期 |
2022-7-9 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|