參考文獻 |
[1] Z.J. Pei, G.R. Fisher, J. Liu, Grinding of silicon wafers: a review from historical perspectives, Int. J. Mach. Tools Manuf. 48 (2008) 1297–1307
[2] J.B. Dai, W.F. Ding, L.C. Zhang, J.H. Xu, H.H. Su, Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding, Int. J. Adv. Manuf. Technol. 81 (2015) 995–1005
[3] M. Segal, Material history learning from silicon, Nature 483 (2012) S43–S44
[4] K. Nakajima, K. Fujiwara, W. Pan, H. Okuda, Shaped silicon-crystal wafers obtained by plastic deformation and their application to silicon-crystal lenses, Nat. Mater. 4 (2005) 47–50.
[5]X. H. Zhang, Z J. Pei, G. R. Fisher, A grinding-based manufacturing method for silicon wafers: generation mechanisms of central dimples on ground wafers, Int. J. Mach. Tool Manuf. 46 (2006) 397–403.
[6] F.W. Huo, D. M. Guo, G. Feng, R. K. Kang, R. L. Wang, A new kinematics for ultra precision grinding of conical surfaces using a rotary table and a cup wheel, Int. J. Mach. Tool Manuf. 59 (2012) 34–45.
[7]Alves LFS, Gomes RCM, Lefranc P, Pegado R de A, Jeannin P-O, Luciano BA, et al.碳化矽 power devices in power electronics: an overview. 2017 Brazilian Power Electron. Conf. 2017:1–8.
[8] N. Yan, W. Miao, Y. Zhao, M. Liu, L. Wang, Y. Li, D. Zhao, Q. Zou, M. Wang, Effects of titania films on the oxidation resistance and dispersibility of ultrafine diamond, Mater. Lett. 141 (2015) 92–95.
[9] W. Miao, N. Yan, Y. Zhao, M. Liu, Y. Li, L. Wang, Q. Zou, H. Tang, L. Qiao, M. Wang, Synthesis and application of titania-coated ultrafine diamond abrasive particles, Ceram. Int. 42 (2016) 8884–8890.
[10] P. Khalilnezhad, S.A. Sajjadi, S.M. Zebarjad, Effect of nanodiamond surface functionalization using oleylamine on the scratch behavior of polyacrylic/nanodiamond nanocomposite, Diam. Relat. Mater. 45 (2014) 7–11.
[11] K.-D. Kim, N.K. Dey, H.O. Seo, Y.D. Kim, D.C. Lim, M. Lee, Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition, Appl. Catal. A 408 (2011) 148–155.
[12]X. Zhang, C. Fu, L. Feng, Y. Ji, L. Tao, Q. Huang, S. Li, Y. Wei, PEGylation and polyPEGylation of nanodiamond, Polymer 53 (2012) 3178–3184.
[13] Z.Y. Zhang, B. Wang, P. Zhou, D.M. Guo, R.K. Kang, B. Zhang, A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors, Sci. Rep. 6 (2016) 22466
[14] Z.Y. Zhang, S .Yang, D.M. Guo, B.Y. Yuan, X.G. Guo, B. Zhang, Y.X. Huo, Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy, Sci. Rep. 5(2015) 11290
[15] W.J. Zong, T. Sun, D. Li, K. Cheng, and Y. C. Liang, XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer, Int. J. Mach. Tools Manuf. 48 (2008) 1678–1687.
[16] H. Huang, B.L. Wang, Y. Wang, J. Zou, L. Zhou, Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding, Mater. Sci. Eng. A 479 (2008) 373–379.
[17] Z.C. Li, Z.J. Pei, G.R. Fisher, Simultaneous double side grinding of silicon wafers: a literature review, Int. J. Mach. Tool Manuf. 46 (2006) 1449–1458.
[18] I. Zarudi, L.C. Zhang, Effect of ultraprecision grinding on the microstructural change in silicon monocrystals, J. Mater. Process. Technol. 84 (1998) 149–158.
[19] Y. Wang, J. Zou, H. Huang, L. Zhou, B.L. Wang, Y.Q. Wu, Formation mechanism of nanocrystalline high-pressure phases in silicon during nanogrinding, Nanotechnology 18 (2007) 465705.
[20] H.T. Young, H.T. Liao, H.Y. Huang, Surface integrity of silicon wafers in ultra precision machining, Int. J. Adv. Manuf. Technol. 29 (2006) 372–378.
[21] S.Y. Luo, K. C. Chen, An experimental study of flat fixed abrasive grinding of silicon wafers using resin-bonded diamond pellets, J. Mater. Process. Mach. Tools Manuf. 51 (2011)18–24
[22] I. Zarudi, J. Zou, LC. Zhang, Microstructures of phases in indented silicon: a high resolution characterization, Appl. Phys. Lett. 82 (2003)874–876
[23] S. Wong, B. Haberl, J.S. Williams, J.E. Bradby, Phase transformation as the single-mode mechanical deformation of silicon, Appl. Phys. Lett. 106 (2015) 252103
[24] M. Takagi, K. Onodera, A. Matsumuro, H. Iwata, K. Sasaki, H. Saka TEM and HRTEM observations of microstructural change of silicon single crystal scratched under very small loading forces by AFM, Mater. Trans. 49 (2008) 1298–1302
[25] R. Gassilloud, C. Ballif, P. Gasser, G. Buerki, J. Michler, Deformation mechanisms of silicon during nanoscratching, Phys. Status Solidi A Appl. Mater. Sci. 202 (2005) 2858–2869
[26] Y.Q. Wu, H. Huang, J. Zou, L.C. Zhang, J.M. Dell ,Nanoscratchinduced phase transformation of monocrystalline, Si. Scr. Mater. 63 (2010) 847–850
[27] Z.J. Pei, Alan Strasbaugh, Fine grinding of silicon wafers, Int. J. Mach. Tools Manuf. 41 (2001) 659–67251
[28] B. Wang, Z. Zhang, K. Chang, J. Cui, A. Rosenkranz, J. Yu, C. T. Lin, G. Chen, K. Zang , J. Luo, N. Jiang, D. Guo , New Deformation-Induced Nanostructure in Silicon, Nano Lett. 18 (2018) 4611-4617
[29] Z. Zhang, X. Wang, F. Meng, D. Liu, S. Huang, J. Cui, J. Wang, W. Wen, Origin and evolution of a crack in silicon induced by a single grain grinding, J. Manuf. Process. 75 (2022) 617-626
[30] Z. Zhang, F. Huo, X. Zhang, D. Guo, Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits, Scr. Mater. 67(7-8), (2012) 657-660
[31] Z. Zhang, Y. Song, C. Xu, D. Guo, A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits, Scr. Mater. 67(2), (2012) 197-200
[32] Z.Y. Zhang, Y.X. Huo, D.M. Guo, A model for nanogrinding based on direct evidence of ground chips of silicon wafers, Sci. China Technol. Sci. 56(9) (2013) 2099-2108
[33] Z.Y. Zhang, J. Cui,B. Wang, Z. Wang, R. Kang, D. Guo, A novel approach of mechanical chemical grinding, J. Alloys Compd. 726 (2017) 514-524
[34] B. Zhao, W. Ding, Z. Chen, C. Yang, Pore structure design and grinding performance of porous metal-bonded CBN abrasive wheels fabricated by vacuum sintering, J. Manuf. Process. 44 (2019) 125–132.
[35] T. Tanaka, S. Esaki, K. Nishida, T. Nakajima, K. Ueno, Development and application of porous vitrified-bonded wheel with ultra-fine diamond abrasives, Key Eng. Mater. 257–258 (2004) 251–256.
[36] H. Zhou, M. Guo, X. Wang, Ultraprecision grinding of silicon wafers using a newly developed diamond wheel, Mater. Sci. Semicond. Process. 68 (2017) 238–244.
[37] D. Zhao, Z. Wang, Y. Xi, Q. Zou, X. Li, B. Wang, X. Guo, M. Liang, W. Li, M. Wang, Y.C. Zhao, Preparation of silica-coated ultrafine diamond and dispersion in ceramicmatrix, Mater. Lett. 113 (2013) 134–137.
[38] J. Lu, Y. Xu, Y. Zhang, X. Xu, The effects of SiO 2 coating on diamond abrasives in sol-gel tool for 碳化矽 substrate polishing, Diam. Relat. Mater. 76 (2017) 123–131.
[39]V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds, Nat. Nanotechnol. 7 (2012) 11–23.
[40] B. Zhao, A.K. Gain, W. Ding, L. Zhang, X. Li, Y. Fu, A review on metallic porous materials: pore formation, mechanical properties, and their applications, Int. J. Adv. Manuf. Technol. 95 (2017) 2641–2659.
[41] Z. Yang, M. Zhang, Z. Zhang, A. Liu, R. Yang, S. Liu, A study on diamond grinding wheels with regular grain distribution using additive manufacturing (AM) technology, Mater. Des. 104 (2016) 292–297.
[42] K. Li, Q. Guo, M. Liu, Y. Zhao, D. Shi, A study on pore-forming agent in the resin bond diamond wheel used for silicon wafer back-grinding, Procedia. Eng. 36 (2012) 322–328.
[43] M. Leśniak, M. Gajek, J. Partyka, M. Sitarz, Thermal characterisation of raw aluminosilicate glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system with variable content of ZnO, J. Therm. Anal. Calorim. 128 (2017) 1343–51.
[44] W.F. Ding, J.H. Xu, Z.Z. Chen, C.Y. Yang, C.J. Song, Y.C. Fu,Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents, Int. J. Adv. Manuf. Technol. 67 (2013)1309–1315
[45] Z.Y. Zhang, F.W. Huo, Y.Q. Wu, H. Huang, Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material, Int. J. Mach. Tools Manuf. 51 (2011)18–24
[46] Z.Y. Zhang, B. Wang, R.K. Kang, B. Zhang, D.M. Guo, Changes in surface layer of silicon wafers from diamond scratching, CIRP Ann. Manuf. Technol. 64 (2015) 349–352
[47] Z.Y. Zhang, D.M. Guo, B. Wang, R.K. Kang, B. Zhang, A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut, Sci. Rep. 5 (2015) 16395
[48] Z.Y. Zhang, S.L. Huang, S.C. Wang, B. Wang, Q. Bai, B. Zhang, R.K. Kang, D.M. Guo, A novel approach of high-performance grinding using developed diamond wheels, Int. J. Adv. Manuf. Technol. 91 (2017)3315–3326.
[49] W. Miao, Y. Ding, Y. Zhao, H. Bao, N. Yana, W. Yang , Z. Hui , B. Liu, Modified gel casting technique to fabricate honeycomb structured vitrified bonded ultrafine diamond grinding wheels, Ceram. Int. 46 (2020) 4462-4469.
[50] L. Zhou1, Y.B. Tian, H. Huang, H. Sato, J. Shimizu, A study on the diamond grinding of ultra-thin silicon wafers, Proc. IMechE Part B: J. Eng. Manuf. 226 (2011) 66–75. |