參考文獻 |
[1] Katare, P. K., & Kriplani, V. M. (2012). Decade Developments of Rotary Compressor. International Journal of Engineering and Technology, 2(12), 1965-1973.
[2] Y. C. Park, “Transient Analysis of a Variable Speed Rotary Compressor,” Energy Conversion and Management, Vol. 51, pp. 277-287, 2010.
[3] Weaver Jr, W., Timoshenko, S. P., & Young, D. H. (1991). Vibration problems in engineering. John Wiley & Sons.
[4] Harris, C. M., Crede, C. E., & Den Hartog, J. P. (1962). Shock and Vibration Handbook, Vols. I, II, and III.
[5] Avallone, A., Eugene, B., Mark, T., (1987). Handbook for Mechanical Engineer, McGraw-Hill, New York.
[6] Van de Vegte, J., & Lake, R. T. (1978). Balancing of rotating systems during operation. Journal of Sound and Vibration, 57(2), 225-235.
[7] Zhang, H., Wu, J., Xie, F., Chen, A., & Li, Y. (2014). Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compressors. International Journal of Refrigeration, 47, 36-45.
[8] Yu, X., Mao, K., Lei, S., & Zhu, Y. (2019). A new adaptive proportional-integral control strategy for rotor active balancing systems during acceleration. Mechanism and Machine Theory, 136, 105-121.
[9] Pan, X., Lu, J., Huo, J., Gao, J., & Wu, H. (2020). A review on self-recovery regulation (SR) technique for unbalance vibration of high-end equipment. Chinese Journal of Mechanical Engineering, 33(1), 1-23.
[10] Ou, C. H., Hsu, C. H., Fan, G. J., & Chen, W. Y. (2020). Rotary machine vibration monitoring and smart balance correction. Advances in Mechanical Engineering, 12(6), 1687814020936032.
[11] ISO:Balancing machines-description and evaluation, ISO 2953-1985(E), Geneva,Switzerland.
[12] Lu, Z., Masri, S. F., & Lu, X. (2020). Origination, development and applications of particle damping technology. In Particle Damping Technology Based Structural Control (pp. 21-51). Springer, Singapore.
[13] Panossian, H. (2008). Non-obstructive particle damping: new experiences and capabilities. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference (p. 2102).
[14] Ye, H., Wang, Y., Liu, B., & Jiang, X. (2019). Experimental study on the damping effect of multi-unit particle dampers applied to bracket structure. Applied Sciences, 9(14), 2912.
[15] Lu, Z., Lu, X., & Masri, S. F. (2010). Studies of the performance of particle dampers under dynamic loads. Journal of Sound and Vibration, 329(26), 5415-5433.
[16] Lu, Z., Masri, S. F., & Lu, X. (2011). Studies of the performance of particle dampers attached to a two-degrees-of-freedom system under random excitation. Journal of Vibration and Control, 17(10), 1454-1471.
[17] Chen, J., Wang, Y., Zhao, Y., & Feng, Y. (2019). Experimental research on design parameters of basin tuned and particle damper for wind turbine tower on shaker. Structural Control and Health Monitoring, 26(11), e2440.
[18] Fowler, B. L., Flint, E. M., & Olson, S. E. (2001, July). Design methodology for particle damping. In Smart Structures and Materials 2001: Damping and Isolation (Vol. 4331, pp. 186-197). International Society for Optics and Photonics.
[19] J. Giesbers, “Contact Mechanics in MSC ADAMS-A Technical Evaluation of the Contact Models in Multibody Dynamics Software MSC Adams”, University of Twente, Netherlands, 2012.
[20] Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.
[21] Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3), 239-250.
[22] Briggs, C. A., & Bearman, R. A. (1995). The assessment of rock breakage and damage in crushing machinery. In Proceedings Explore, 95, 167-172.
[23] Zhang, D., & Whiten, W. J. (1996). The calculation of contact forces between particles using spring and damping models. Powder Technology, 88(1), 59-64.
[24] Chung, Y. C., Wu, C. W., Kuo, C. Y., & Hsiau, S. S. (2019). A rapid granular chute avalanche impinging on a small fixed obstacle:DEM modeling, experimental validation and exploration of granular stress. Applied Mathematical Modelling, 74, 540-568.
[25] Wu, Y. R., Chung, Y. C., & Wang, I. C. (2021). Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles. Mechanism and Machine Theory, 159, 104257.
[26] 王譯徵,應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計,博士論文,國立中央大學,台灣,2022。 |