博碩士論文 109323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.119.102.149
姓名 黃宣凱(Hsuan-Kai Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 離岸風力機塔架疲勞裂縫成長分析
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對半橢圓裂縫結構建立快速的疲勞裂縫成長分析方法。以NREL 5MW OWT風力機為對象,綜合考量IEC 61400-3之DLC 3.2啟動耦合陣風與DLC 1.2正常發電工況。先利用單位負載法與API 579規範提供之權重函數法,以針對塔架上半橢圓裂縫進行快速的動態應力與應力強度因子分析,再結合疲勞裂縫成長理論,求得半橢圓裂縫於疲勞負載下之形狀變化,以進行快速疲勞裂縫成長分析,並使用BS 7910規範提供之失效評估法,決定疲勞裂縫成長時的最終裂縫尺寸,以求出壽命。根據IEC 61400-3規範要求風力機之20年壽命,可求得臨界初始裂縫尺寸,即發現裂縫大於此值時,壽命將不符合規範要求,並進而探討半橢圓裂縫長短軸、裂縫位置、海水位高度與風浪方向對疲勞裂縫成長分析結果之影響。分析方法整合GH-Bladed、ANSYS及MATLAB,風況及海況採用新竹沿海資料。
於動態應力及應力強度因子分析中,發現在正常發電及啟動工況下,塔架底部沿著壁厚方向的正向應力幾乎為線性分布,且利用膜應力與最大彎曲應力描述此路徑之應力分布時,發現此兩應力有線性關係。此外,在不同塔架截面方位角及不同工況皆有相同結果。於裂縫在疲勞負載下的形狀變化探討中,發現不同初始長短軸比之半橢圓裂縫隨著裂縫成長,其長短軸比會趨於近似值,並得知影響半橢圓裂縫形狀變化的主要參數為初始裂縫尺寸(初始長短軸比),而應力大小與應力比幾乎不影響。於塔架銲道裂縫失效評估中,發現於同樣裂縫深度下,較小之裂縫長短軸比會較早失效。在疲勞裂縫成長分析,考量裂縫位置及不同環境參數時,初始裂縫長短軸比較小者,其臨界初始裂縫深度較小,又發現塔架內壁裂縫比外壁裂縫之臨界初始裂縫深度小。正對風浪方向之塔架位置存在裂縫時之臨界初始裂縫深度較小,此時初始裂縫長短軸比每增加0.1,臨界初始裂縫深度上升趨勢為0.75 ~ 1.15 mm。而海水位高度較高或是風力機沒有對準風浪方向時,臨界初始裂縫深度亦較小,而當初始裂縫長短軸比每增加0.1,臨界初始裂縫深度上升趨勢分別為0.7 ~ 0.9 mm與0.5 ~ 0.9 mm。
摘要(英) In this study, a fast fatigue crack growth analysis method was established for semi-elliptic crack structures. The NREL 5MW OWT wind turbine is taken as the object, and DLC 3.2 start-up coupling gust condition and DLC 1.2 normal power generation conditions in IEC 61400-3 are considered. First, unit-load method and weight function method provided by API 579 standard are used to analyze the dynamic stress and stress intensity factor of semi-elliptic cracks on the tower. Then combined with fatigue crack growth theory, the crack shape development of semi-elliptical crack under fatigue load is obtained for fast fatigue crack growth analysis. Failure assessment method provided by BS7910 standard is used to determine the final crack size in the fatigue crack growth analysis to obtain fatigue life. According to the requirement of 20-year service life of wind turbine from IEC 61400-3 standard, the critical initial crack size can be obtained, that is, if the crack size is larger than this value, the service life will not meet the standard requirement. After the calculation, the influence of aspect ratio of crack, crack position, sea level and wind-wave direction on the results of fatigue crack growth analysis are discussed. The analysis integrates GH-Bladed, ANSYS and MATLAB softwares. The wind and sea conditions are based on the data at Hsinchu coastal.
In the analysis of dynamic stress and stress intensity factor, it is found that under normal power generation and start-up conditions, the axial normal stress along the tower wall is almost linearly distributed at the tower bottom. When the stress distribution of the path was described by membrane stress and maximum bending stress, it is found that the two stresses have a linear relationship. In addition, the same results are obtained in different azimuthal angles of the tower section and various working conditions. With respective to the shape development of the crack under fatigue load, it is found that the aspect ratio of semi-elliptical crack with different initial aspect ratios will reach an approximate value under fatigue crack growth process. The main parameter affecting the shape change of the semi-elliptical crack is the initial crack size (initial aspect ratio), while stress level and stress ratio have little effect. In the failure assessment analysis of the crack on the tower weldment, it is found that under the same crack depth, the smaller aspect ratio of crack will fail earlier. In the fatigue crack growth analysis, considering the crack location and different environments, the critical initial crack depth is smaller when the initial crack aspect ratio is smaller. The critical initial crack depth of the crack at the inner wall of tower is smaller than the outer one. The critical initial crack depth is small when there is crack in the position directly facing wind and waves. The critical initial crack depth rises from 0.75 - 1.15 mm for every increase of 0.1 in the initial crack aspect ratio. When the seawater level is high or the wind turbine is not aligned with the direction of the wind and waves, the critical initial crack depth is also small. The critical initial crack depth rises from 0.7 - 0.9 mm and 0.5 - 0.9 mm for every increase of 0.1 in the initial crack aspect ratio, respectively.
關鍵字(中) ★ 離岸風力機
★ 塔架
★ 權重函數法
★ 裂縫形狀變化
★ 失效評估圖
★ 疲勞裂縫成長
關鍵字(英) ★ offshore wind turbine
★ tower
★ weight function method
★ crack shape development
★ failure assessment diagram
★ fatigue crack growth
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 x
表目錄 xv
符號說明 xvii
第一章 、緒論 1
1-1 研究背景與動機 1
1-2 研究目的 5
1-3 離岸風力機簡介 6
1-3-1 風力機原理 6
1-3-2 離岸風力機機組構造 7
1-4 文獻回顧 9
1-4-1 離岸風力機之設計規定 9
1-4-2 應力強度因子計算 9
1-4-3 半橢圓裂縫於疲勞負載下之形狀變化 10
1-4-4 裂縫結構之失效評估分析 11
1-4-5 塔架銲道裂縫之疲勞分析 12
第二章 、理論說明 13
2-1 軟體說明 13
2-1-1 GH-Bladed 13
2-1-2 MATLAB 13
2-2 風力機外部條件 14
2-2-1 風況條件 15
2-2-1-1 風速分布 15
2-2-1-2 十分鐘平均風速 16
2-2-1-3 風切係數 16
2-2-1-4 紊流強度 17
2-2-1-5 極端陣風 18
2-2-2 海況條件 18
2-2-2-1 波浪 18
2-2-2-2 洋流 21
2-2-2-3 潮汐水位 22
2-3 離岸風力機負載 24
2-3-1 慣性與重力負載 24
2-3-2 氣動力負載 25
2-3-2-1 葉片 25
2-3-2-2 塔架 29
2-3-3 水動力負載 29
2-3-4 負載歷程輸出 30
2-4 單位負載法 30
2-5 疲勞裂縫成長 31
2-5-1 破壞力學 31
2-5-1-1 線彈性破壞力學 (Linear Elastic Fracture Mechanics, LEFM) 31
2-5-2 疲勞裂縫成長曲線 34
2-6 循環計數 35
第三章 、研究方法 37
3-1 離岸風力機型號與規格 38
3-2 建構NREL 5MW OWT模型 42
3-2-1 GH-Bladed建構NREL 5MW OWT模型 42
3-2-2 ANSYS Workbench建構NREL 5MW OWT模型 44
3-2-2-1 塔架模型設定 44
3-2-2-2 塔架法蘭模型 45
3-2-2-3 網格設定 46
3-3 模態分析 47
3-4 NREL 5MW OWT設計工況 48
3-4-1 DLC 1.2 正常發電工況 48
3-4-2 DLC 3.2 啟動工況 52
3-4-3 輸入GH-Bladed之工況參數整理 54
3-5 GH-Bladed塔架負載轉換 55
3-6 GH-Bladed模擬資料取樣頻率 57
3-7 塔架裂縫之失效評估方法 59
3-7-1 失效評估曲線 59
3-7-2 待評估點 63
3-7-2-1 裂縫參考應力 63
3-7-2-2 材料性質與破壞韌性 64
3-8 疲勞裂縫成長分析 66
3-8-1 裂縫位置、形狀及尺寸 66
3-8-2 應力強度因子計算 69
3-8-2-1 權重函數法 69
3-8-2-2 單位負載法 71
3-8-3 疲勞裂縫成長壽命預測快速計算方法 73
第四章 、結果與討論 74
4-1 NREL 5MW OWT離岸風力機模型驗證 74
4-1-1 葉片及塔架模態分析 74
4-1-2 塔架負載轉換驗證 76
4-2 動態應力歷程分析(單位負載法) 77
4-3 應力強度因子分析(權重函數法) 83
4-3-1 參數迴歸式 83
4-3-2 應力強度因子計算結果之驗證 85
4-4 半橢圓裂縫於疲勞負載下之長短軸比變化 86
4-4-1 裂縫成長參數 86
4-4-2 影響半橢圓長短軸比變化之參數探討 88
4-4-3 半橢圓裂縫長短軸比預測 93
4-5 塔架銲道裂縫失效評估 94
4-6 疲勞裂縫成長壽命評估 97
4-6-1 應力馬可夫矩陣與工況整合 97
4-6-2 疲勞裂縫成長評估方法之驗證 99
4-6-3 NREL 5MW OWT離岸風力機之疲勞裂縫壽命評估 102
4-7 正常發電下之塔架疲勞裂縫成長分析 105
4-7-1 裂縫於塔架各截面方位角位置之影響 105
4-7-2 海水位之影響 109
4-7-3 風浪方向之影響 112
4-7-4 裂縫檢測儀器與臨界初始裂縫尺寸 115
4-7-5 風與浪之亂數種子的影響 115
第五章 、結論與未來研究方向 119
5-1 結論 119
5-2 未來研究方向 121
參考文獻 122
參考文獻 [1] "風力發電4年推動計畫" ,經濟部能源局,2017。
[2] 網路資料:風力發電單一服務窗口。2022年6月,取自https://www.twtpo.org.tw/。
[3] 網路資料:4C Offshore。2022年6月,取自https://www.4coffshore.com/windfarms/windspeeds.aspx。
[4] "Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines, " IEC 61400-3, International Electrotechnical Commission, 2009.
[5] 呂學德、何無忌、呂威賢、胡哲魁、陳美蘭、連永順, "台灣離岸風力潛能與優選離岸區塊場址研究",中華民國第三十六屆電力工程研討會,2015年12月12-13日。
[6] B. O′Kelly and Arshad M, “Offshore Wind Turbine Foundations: Analysis and Design,” Editor(s): Chong Ng and Li Ran, Offshore Wind Farms, Woodhead Publishing, pp. 589-610, 2016.
[7] 網路資料:維基百科。2022年6月,取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0。
[8] “Wind Turbines - Part 1: Design Requirements,” IEC 61400-1, International Electrotechnical Commission, 2019.
[9] API 579-1/ASME FFS-1, "Fitness-For-Service", American Petroleum Institute and ASME, 2016.
[10] G. Shen and G. Glinka, "Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate," Theoretical and Applied Fracture Mechanics, Vol. 15, pp. 247-255, 1991 .
[11] G. Glinka, “Development of Weight Functions and Computer Integration Procedures for Calculating Stress Intensity Factors around Cracks Subjected to Complex Stress Fields,” Analytical Services & Materials, Inc. 107 Research Drive, Hampton, VA 23666, USA, 1996.
[12] J. Kasivitamnuay, “Simplified Weight Function for Calculating Stress Intensity Factor in Complicated Stress Distributions,” Eng. J., Vol. 20, No. 2, pp. 49-60, May 2016.
[13] X. B. Lin and R. A. Smith, "Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates, Part II: Crack Shape Change", Engineering Fracture Mechanics, Vol. 63, pp. 523-540, 1999.
[14] C. H. Liu and S. J. Chu, "Prediction of Shape Change of Semi-Elliptical Surface Crack by Fatigue Crack Growth Circles Parameter", Mechanical Science and Technology, Vol. 28, pp. 4921-4928, 2014.
[15] J. Toribio, J. C. Matos, and B. González, "Aspect Ratio Evolution in Embedded, Surface, and Corner Cracks in Finite-thickness Plates under Tensile Fatigue Loading", Applied Sciences, Vol. 7, No. 7, pp. 746-758, 2017.
[16] T. Oplt, M. Jambor, L. Náhlík, and P. Hutař, “Numerical Simulations of Semi-elliptical Fatigue Crack Propagation,” AIP Conference Proceedings 2309, 020005, November 30, 2020.
[17] BS 7910, "Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures", British Standard Institution, 2013.
[18] ASME, “Rules for Inservice Inspection of Nuclear Power Plant Components,” ASME BPVC Section XI, 2010.
[19] Q. A. Mai, J. D. Sørensen, and P. Rigo, “Updating Failure Probability of a Welded Joint in Offshore Wind Turbine Substructures,” The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, June 19-24 , 2016.
[20] R. A. Ainsworth, M. Gintalas, M. K. Sahu, J. Chattopadhyay, and B. K. Dutta, “Failure Assessment Diagram Assessments of Large-Scale Cracked Straight Pipes and Elbows,” SMiRT 23 Manchester, United Kingdom, August 10-14, 2015.
[21] M. Elsayed, A. E. Domiaty, A. H. I. Mourad, “Fracture Assessment of Axial Crack in Steel Pipe under Internal Pressure,” Procedia Engineering, Vol. 130, pp. 1273-1287, 2015.
[22] P. Amirafshari, F. Brenan, A. Kolios, “A Fracture Mechanics Framework for Optimising Design and Inspection of Offshore Wind Turbine Support Structures Against Fatigue Failure,” Wind Energy Science, Vol. 6, No. 3, pp. 677-699, 2021.
[23] L. Ziegler and M. Muskulus, “Comparing A Fracture Mechanics Model to The SN-Curve Approach for Jacket-Supported Offshore Wind Turbines: Challenges and Opportunities for Lifetime Prediction,” ASME 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, June 19-24, 2016.
[24] P. J. Murtagh and R. S. Vecchio, “Fitness-for-Service Assessment of In-Service Wind Turbine Towers,” Eighth Congress on Forensic Engineering, Austin, Texas, November 29-December 2, 2018.
[25] DNV GL, and Garrad Hassan & Partners Ltd, “Bladed User Manual Version 4.8,” 2016.
[26] 陳俞凱、陳景林, "以IEC 61400-1 對彰濱風場數據進行風況評估",台灣風能協會學術研討會暨NEPII離岸風力及海洋能源主軸中心成果發表會,國立台灣大學,台灣,2015年12月8日。
[27] DNV GL, and Garrad Hassan & Partners Ltd, “Bladed Theory Manual Version 4.8,” 2016.
[28] 網路資料: Particle Motion in Deep Water。2022年6月,取自https://www.scubageek.com/articles/wwwparticle.html。
[29] T. Gentils, L. Wang, and A. Kolios, “Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm,” Applied Energy, Vol. 199, pp. 187-204, 2017.
[30] 唐榕崧, "複合材料葉片振動行為之研究" ,國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009。
[31] 王晟桓、陳世雄, "基於葉素動量理論之水平軸風力發電機葉片空氣動力分析程序",臺灣風能學術研討會,G6-09,國立澎湖科技大學,台灣,2010年12月17日。
[32] DNV GL, “Design of Offshore Wind Turbine Structures,” DNV-OS-J101, 2014.
[33] M. B. Fuchs, "The Unit-Load Method," Structures and Their Analysis: Springer, pp. 85-110, 2016.
[34] 網路資料:維基百科。2022年6月,取自https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg。
[35] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
[36] G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Trans. Of ASME, Vol. 24, pp. 361-364, 1957.
[37] M. Chiesa, “Linking Advanced Fracture Models to Structural Analysis,” The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of applied mechanics, thermodynamics and fluiddynamics, 2001.
[38] S. R. Lampman, “ASM Handbook: Volume 19, Fatigue and Fracture,” ASM International, 1996.
[39] P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Law,” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
[40] M. Matsuishi and T. Endo, "Fatigue of Metals Subjected to Varying Stress," Japan Society of Mechanical Engineers, Fukuoka, Japan, Vol. 68, No. 2, pp. 37-40, 1968.
[41] "Standard Practices for Cycle Counting in Fatigue Analysis," ASTM International, 2017.
[42] 崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,台灣,2018。
[43] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009
[44] J. Jonkman and W. Musial, “Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-5000-48191, 2010.
[45] DNV GL, “Loads and Site Conditions for Wind Turbines,” DNVGL-ST-0437, 2016.
[46] U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, “Microtab Design and Implementation on a 5MW Wind Turbine,” Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017。
[47] S. Aasen, A. M. Page, K. S. Skau, and T. A Nygaard, “Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine,” Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
[48] 洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學碩士論文,2019。
[49] 劉岳群,"離岸風力機塔架在正常發電下之疲勞分析",國立中央大學碩士論文,2020。
[50] 施忠賢,"彰工II塔架結構計算書",施忠賢結構計師事務所,2010。
[51] 周聖勳, "離岸風力機塔架之開機負載及失效評估分析", 國立中央大學碩士論文,2021。
[52] 楊子霆,"大型風力機塔架延壽評估",國立中央大學碩士論文,2018。
[53] 張景鐘,"台灣地區風速頻譜之探討",中華民國風工程學會電子期刊,第5期,pp. 54-80,2013。
[54] AWS, “Structural Welding Code—Steel,” AWS D1.1/D1.1M, 2006.
[55] ASME, “Rules for Construction of Pressure Vessels,” ASME BPVC Section VIII, 2017.
[56] N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, “Welded Connections of Wind Turbine Towers under Fatigue Loading: Finite Element Analysis and Comparative Study,” American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, pp. 489-503, 2015.
[57] 馬尼,"平板與薄管中半橢圓形裂縫疲勞成長的數值模擬",國立虎尾科技大學飛機工程系航空與電子科技碩士班,碩士論文,2019。
[58] J. Bannantine, J. Comer, and J. Handrock, "Fundamentals of Metal Fatigue Analysis," Prentice Hall, United States, 1990.
[59] 劉瑞弘,"風力機結構負載與共振模態之分析",機械工業雜誌,第319期,工業技術研究院,工業技術研究院,2009。
[60] I. S. Putra and J. Schijve, “Crack Opening Stress Measurements of Surface Cracks in 7075-T6 Aluminium Alloy Plate Specimen through Electron Fractography,” FFEMS, Vol.15, pp. 323-338, 1992.
[61] N.B. McFadyen, R. Bell and O. Vosikovsky, “Fatigue crack growth of semi-elliptical surface cracks,” International Journal of Fatigue, Vol. 12, pp. 43-50, 1990.
[62] J. Velarde and E. E. Bachynski, “Design and Fatigue Analysis of Monopile Foundations to Support the DTU 10 MW Offshore Wind Turbine,” Energy Procedia, Vol. 137, pp. 3-13, 2017.
[63] K. A. Kragh and M. Hansen, “Load Alleviation of Wind Turbines by Yaw Misalignment, ” Wind Energy, Vol. 17, pp. 971-982, 2014.
[64] N. Veritas, "Guidelines for Design of Wind Turbines," Wind Energy Department and Risø National Laboratory, Det Norske, Veritas, 2002.
指導教授 黃俊仁 審核日期 2022-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明