博碩士論文 109521047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.142.55.88
姓名 許浩青(Hao-Ching Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具雙層二維電子氣通道閘極蝕刻氮化鎵高電子遷移率電晶體
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一般常見的氮化鎵電晶體使用一層AlGaN/GaN形成的2DEG 通道進行電晶體的導通,多層通道磊晶的使用也有結構上的限制,為了使多層通道的電晶體達到正的臨界電壓,需要設計奈米等級的鰭寬度(WFin),使閘極能有效的控制每個通道形成增強型的工作條件。本論文研究內容為探討掘入式(Gate recess)三閘極(Tri-gate)增強型金絕半場效電晶體,搭配AlGaN/GaN/AlGaN/GaN dual channel的磊晶層設計,掘入式結構設計透過蝕刻深度的不同,確認電晶體電性及臨界電壓對蝕刻深度的變化,搭配三閘極結構設計,在閘極位置蝕刻微米等級的數個並列溝槽(Trench),定義出鰭形(Fin shaped)溝槽,達成提高閘極控制的能力。同時探討在閘極掘入深度從40奈米到50奈米,蝕刻深度變化對臨界電壓之影響。
電晶體製程步驟中,使用氬離子佈植隔絕方式進行元件的製程,元件經由氬離子佈植絕緣之後,會使用ICP-RIE進行溝槽及閘極掘入的蝕刻,閘極掘入的蝕刻深度分別為40、45、50奈米,蝕刻之後會使用稀釋一定比例的BOE、HCl和TMAH溶液對蝕刻表面進行清洗,接著透過ALD沉積20 奈米的氧化鋁(Al2O3)當作閘極絕緣層,最後完成的元件具有2微米的溝槽寬度(WTrench)及2微米的鰭寬度。
元件的最大汲極電流、導通電阻、最大增益轉導值,最小次臨界擺幅,在無閘極掘入的元件比其他閘極掘入深度的元件特性較好。但隨著閘極掘入深度變深,得到臨界電壓增加的變化,當閘極掘入深度來到50奈米時,可得到具有1.46 V的臨界電壓,144.81 mA/mm的汲極電流和4.52  108的電流開關比。藉由電流和電容遲滯量測可估算各閘極掘入深度的元件介面缺陷密度,搭配經稀釋一定比例的BOE、HCl和TMAH溶液進行蝕刻表面處理,得到在界電層與半導體的界面缺陷密度最低約為7.86  1011 eV-1cm-2和0.37 V的遲滯電壓變化量。研究顯示了雙通道對於元件閘極掘入後臨界電壓變化量較小,可從雙通道與單通道元件的模擬結果中同時觀察,雙通道元件在不同閘及掘入後對臨界電壓的變化量較單通道元件的變化量小。
摘要(英) Generally, traditional GaN transistors use only one 2DEG channel formed AlGaN/GaN layer to conduct drain current. The use of multi-layer channel epitaxy also has structural limitations. In order to make the multi-layer channel transistor reach a positive threshold voltage, it is necessary to design the nanoscale fin width (WFin) for the gate to effectively control each channel. The research content of this paper is to discuss the gate recess tri-gate enhancement mode metal insulator semiconductor field effect transistor, with the epitaxial layer design of the AlGaN/GaN/AlGaN/GaN dual channel. Gate recess structure designed by the difference of etching depth, the change of transistor electrical properties, and threshold voltage to etching depth is confirmed by I-V measurement. With the Tri-gate structure design, several micron-level parallel grooves are etched at the gate position. A fin-shaped trench is designed to improve gate control ability. At the same time, the influence of the etching depth on the threshold voltage is discussed when the gate isolation etching depth is from 40 nm to 50 nm.
In the transistor process step, the device is fabricated by the argon ion implantation isolation method. After the device is isolated by argon ion implantation, ICP-RIE is used for trench and gate recess etching, the etching depth of the gate recess is 40, 45, and 50 nm, respectively. After etching, the etched surface will be cleaned with a certain proportion of BOE, HCl, and TMAH solutions, and then through ALD deposited 20 nm of aluminum oxide (Al2O3) as the gate insulating layer, and the final device had a trench width (WTrench) of 2 μm and a fin width of 2 μm.
The maximum drain current, on-resistance, maximum transconductance value, and the minimum subthreshold swing of the device without gate recess have better characteristics than other devices with gate recess. When the gate recess etching depth becomes deeper, the change of the threshold voltage increases. When the gate recess etching depth reaches 50 nm, a threshold voltage of 1.46 V, a drain current of 144.81 mA/mm, and an on-off current ratio of 4.52  108 V can be obtained. Through current and capacitance hysteresis measurement, the device interface trap density of each gate recess etching depth can be estimated, and the device is dipped in diluted BOE, HCl, and TMAH solutions to reduce the surface damages. The lowest interface trap density is about 7.86  1011 Ev-1cm-2 and a hysteresis voltage of 0.37 V. This study shows that the variation of the threshold voltage of the dual-channel device is smaller, which can be observed simultaneously from the simulation results of the dual-channel and single-channel devices. The variation of the threshold voltage of the dual-channel device is smaller than that of the single-channel device.
關鍵字(中) ★ 氮化鎵
★ 雙層二維電子氣通道
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 V
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 三五族半導體之氮化鎵特性與發展前景 2
1.3 實現增強型氮化鎵元件及雙通道結構研究文獻回顧 4
1.3.1 實現增強型元件操作方法 4
1.3.2 雙通道結構研究回顧 17
1.4 研究動機與目的 21
1.5 論文架構 21
第二章 氮化鎵電晶體之磊晶結構特性分析及製程流程與元件模擬 22
2.1 AlGaN/GaN/AlGaN/GaN於矽基板之磊晶結構與特性 22
2.2 Recessed gate AlGaN/GaN MIS-FET之佈局與製程流程 32
2.2.1 元件佈局設計 32
2.2.2 Recessed planar與Recessed tri-gate MIS-FETs之製程流程 35
2.3 Recessed gate AlGaN/GaN MIS-FETs元件模擬 42
2.3.1 2D Recessed gate AlGaN/GaN MIS-FETs元件模擬 43
2.3.2 Recessed tri-gate AlGaN/GaN MIS-FETs元件模擬 50
2.4結論 52
第三章 不同閘極掘入蝕刻深度之元件量測討論 53
3.1 不同閘極掘入蝕刻深度之planar元件量測特性 53
3.2 不同閘極掘入蝕刻深度之Recessed tri-gate元件量測特性 61
3.3崩潰電壓量測及電容—電壓變頻量測 68
3.3.1 崩潰電壓量測 68
3.3.2 電容—電壓量測 74
3.4 結論 81
第四章 結論 83
參考文獻 84
附錄 I 詳細製程流程 88
Publication List/Acknowledgement 91
參考文獻 [1] SemiconductorTODAY, "GaN to grow at 9% CAGR to over 18% of RF device market by 2020", SemiconductorTODAY, 2014.
[2] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of Ga2O3 materials, processing, and devices", Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018.
[3] R. Brown, "A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness", Phd thesis, University of Glasgow, Jul. 2015.
[4] D. Balaz, "Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors", Phd thesis, University of Glasgow, 2010.
[5] D. Marcon, M. V. Hove, B. D. Jaeger, N. Posthuma, D. Wellekens, S. You, X. Kang, T. L. Wu, M. Willems, S. Stoffels, and S. Decoutere, "Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-On-Si with Au-free technology", Proc. of SPIE, vol. 9363, pp. 936311-1–936311-12, Mar. 2015.
[6] T. Pu, Y. Chen, X. Li, T. Peng, X. Wang, J. Li, W. He, J. Ben, Y. Lu, X. Liu, "Gate structure dependent normally-off AlGaN/GaN heterostructure field-effect transistors with p-GaN cap layer", Journal of Physics D: Applied Physics, vol. 53, no. 41, Jul. 2020.
[7] M. Ishiguro, S. Urano, R. S. Low, M. Faris, I. Nagase, A. Baratov, J. T. Asubar, T. Motoyama, Y. Nakamura, Z. Yatabe, M. Kuzuhara. "Recessed gate GaN-based MIS-HEMTs with Al2O3 gate dielectric deposited by mist-CVD method. In 2021 IEEE International Meeting for Future Electron Devices", Kansai (IMFEDK). pp. 1-2. Nov. 2021.
[8] H. Huang, Y. C. Liang, G. S. Samudra, and C. L. L. Ngo, "Au-Free Normally-Off AlGaN/GaN-on-Si MIS-HEMTs Using Combined Partially Recessed and Fluorinated Trap-Charge Gate Structures," IEEE Electron Device Letters, vol. 35, no. 5, pp. 569-571, May. 2014.
[9] Hsieh, T. E., Chang, E. Y., Song, Y. Z., Lin, Y. C., Wang, H. C., Liu, S. C., Salahuddin Sayeef, Hu Chenming Calvin. "Gate recessed quasi-normally OFF Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer". IEEE Electron Device Letters, vol. 35, no. 7. Jul. 2014
[10] S. -W. Tang, S. B. Kutub and T. -L. Wu, "Robust Forward Gate Bias TDDB Stability in Enhancement-mode Fully Recessed Gate GaN MIS-FETs with ALD Al2O3Gate Dielectric", IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1-4. Jul. 2020.
[11] M. Zhu, J. Ma, L. Nela, and E. Matioli, "High-performance normally-off tri-gate GaN power MOSFETs", 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 71-74. May. 2019.
[12] Wu, C. H., Chen, J. Y., Han, P. C., Lee, M. W., Yang, K. S., Wang, H. C., Chang, P. O., Luc, Q. H., Lin, Y. C., Dee. C. F., Hamzah, A. A., Chang, E. Y. "Normally-Off Tri-Gate GaN MIS-HEMTs with 0.76 mΩ·cm2 Specific On-Resistance for Power Device Applications". IEEE Transactions on Electron Devices, vol. 66, no. 8, Aug. 2019.
[13] Nela, L., Erine, C., Ma, J., Yildirim, H. K., Van Erp, R., Xiang, P., Cheng, Kai., Matioli, E. "High-performance enhancement-mode AlGaN/GaN multi-channel power transistors". 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD). pp. 143-146. May. 2021.
[14] Luca Nela, Ming Xiao, Yuhao Zhang, and Elison Matioli , "A perspective on multi-channel technology for the next-generation of GaN power devices", Appl. Phys. Lett. Jan 2022.
[15] Tsai, C. J., You, X. R., Tsai, M. H., & Hsin, Y. M. "High-performance normally-off recessed tri-gate GaN MIS-FETs in micrometer scale". Semiconductor Science and Technology, Nov. 2021.
[16] Yuge, K., Nabatame, T., Irokawa, Y., Ohi, A., Ikeda, N., Uedono, A., Sang, L., Koide, Y., Ohishi, T. "Influence of post-deposition annealing on interface characteristics at Al2O3/n-GaN". Electron Devices Technology and Manufacturing Conference (EDTM). pp. 368-370. Mar. 2019.
[17] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto and H. Shimawaki, "A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique", International Electron Devices Meeting (IEDM). pp. 1-4. Dec. 2009.
[18] Yang, L., Lu, H., Zhang, M., Niu, X., Shi, C., Hou, B., Mi, M., Wu, M., Zhu, Q., Lu, Y., Lv, L., Cheng, K., Ma, X., Hao, Y. "Investigation on the Influence of Ohmic Structure on Channel-to-Channel Coupling Effect in InAlN/GaN Double Channel HEMTs". IEEE Journal of the Electron Devices Society. Jun. 2022.
[19] Wei, J., Lei, J., Tang, X., Li, B., Liu, S., and Chen, K. J. "Channel-to-channel coupling in normally-off GaN double-channel MOS-HEMT". IEEE Electron Device Letters. Jan. 2018.
[20] Wei, J., Liu, S., Li, B., Tang, X., Lu, Y., Liu, C., Hua, M., Zhang, Z., Tang, G., and Chen, K. J. "Low on-resistance normally-off GaN double-channel metal–oxide–semiconductor high-electron-mobility transistor". IEEE Electron Device Letters. Dec. 2015.
[21] F. Sacconi, A. Di Carlo, P. Lugli and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs", Transactions on Electron Devices, vol. 48, no. 3, pp. 450-457, March 2001.
[22] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures", J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, Mar. 1999.
[23] D. Visalli, M. V. Hovea, P. Srivastavaa, D. Marcona, K. Geensa, X. Kanga, E. Vandenplasa, J. Viaenea, M. Leysa, K. Chenga, B. Sijmusa, S. Decouterea, and G. Borghsa, "GaN-on-Si For High-Voltage Applications", ECS Trans., vol. 41, no. 8, pp. 101–112, Jan. 2011.
[24] I. B. Rowena, S. L. Selvaraj, and T. Egawa, "Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si", IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, Nov. 2011.
[25] Yoon, Y. J., Seo, J. H., Cho, M. S., Kang, H. S., Won, C. H., Kang, I. M., & Lee, J. H. "TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs". Solid-State Electronics, Jul. 2016.
[26] Silvaco, Inc, "Atlas User’s Manual DEVICE SIMULATION SOFTWARE", Aug. 2016.
[27] E. H. Nicollian and A. Goetzberger, "The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique", Bell Syst. Tech. J, vol. 46, pp. 1055-1133, Jul. 1967.
[28] S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. J. Chen, "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges", IEEE Electron Device Lett., vol. 34, no. 2, pp. 193–195, Feb. 2013.
[29] L. Yuan, H. Chen and K. J. Chen, "Normally Off AlGaN/GaN Metal–2DEG Tunnel-Junction Field-Effect Transistors", IEEE Electron Device Letters, vol. 32, no. 3, pp. 303-305, March. 2011.
[30] J. J. Freedsman, T. Kubo and T. Egawa, "High Drain Current Density E-Mode Al2O3/AlGaN/GaN MOS-HEMT on Si With Enhanced Power Device Figure-of-Merit (4×108 V2Ω−1cm−2)", IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3079-3083, Oct. 2013.
[31] Tang, Z., Jiang, Q., Lu, Y., Huang, S., Yang, S., Tang, X., & Chen, K. J. "600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse". IEEE Electron Device Letters, Nov. 2013.
[32] B. Lu, O. I. Saadat, and T. Palacios, "High-Performance Integrated Dual-Gate AlGaN/GaN Enhancement-Mode Transistor", IEEE Electron Device Letters, vol. 31, no. 9, pp. 990-992, Sep. 2010.
[33] L. Yuan, H. Chen, Q. Zhou, C. Zhou and K. J. Chen, "A novel normally-off GaN power tunnel junction FET", IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, May. 2011.
[34] Zhou, G., Wan, Z., Yang, G., Jiang, Y., Sokolovskij, R., Yu, H., & Xia, G. "Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates". IEEE Transactions on Electron Devices, Mar. 2020.
[35] Wu, T. L., Marcon, D., You, S., Posthuma, N., Bakeroot, B., Stoffels, S., ... & Decoutere, S. "Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistors". IEEE Electron device letters, Oct. 2015.
[36] Meneghini, M., Rossetto, I., Rizzato, V., Stoffels, S., Van Hove, M., Posthuma, N., Wu, T. L., Marcon, D., Decoutere, S., Meneghesso, G., and Zanoni, E. "Gate stability of GaN-based HEMTs with p-type gate". Electronics, Mar. 2016.
[37] Zhang, Z., Yu, G., Zhang, X., Deng, X., Li, S., Fan, Y., Sun, S., Song, L., Tan, S., Wu, D., Li, W., Huang, W., Fu, K., Cai, Y., Sun, W., and Zhang, B. "Studies on high-voltage GaN-on-Si MIS-HEMTs using LPCVD Si3N4 as gate dielectric and passivation layer. IEEE Transactions on Electron Devices", Feb. 2016.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2022-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明