參考文獻 |
Adams, C. E. and Shelby, S. E., Comparative Overview of Competitive Activated Sludge Configurations for Industrial Wastewaters, Seminar by ENVIRON International Corp. tp AIChE, Baton Kouge, LA, March 14,2008.
Arardy, F.J., Membrane Processes, Processes Design in Water Quality Engineering, E.L. Tackston and W. W. Eckenfelder, eds., Jenkins Publishing Co., Austin, Texas,1972.
Bérubé PR, Afonso G, Taghipour F and Chan CCV, Quantifying the shear at the surface of submerged hollow fiber membranes. J Membr Sci 279: 495-505 (2006).
Böhm L and Kraume M, Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems. J Membr Sci 475:533-544 (2015).
Cartwrigh, W.P.: Chemical Enginnering, McGraw-Hill, September 1994.
Chan CCV, Bérubé PR and Hall ER, Relationship between types of surface shear stress profiles and membrane fouling. Water Res 45: 6403-6416 (2011).
Chang, S.; Fane, A.G. The effect of fibre diameter on filtration and flux distribution—Relevance to submerged hollow fibre modules. J. Membr. Sci. 2001, 184, 221–231.
Drews A, Prieske H, Meyer E-L, Senger G and Kraume M, Advantageous and detrimental effects of air sparging in membrane filtration: Bubble movement, exerted shear and particle classification. Desalination 250: 1083-1086 (2010).
Du X, Qu F-S, Liang H, Li K, Bai L-M and Li G-B, Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: Shear stress and particle forces analysis.Sep Purif Technol 172: 130-139 (2017).
Elham Radaei, Xuefei Liu, Keng Han Tng, Giuseppe Merendino, Francisco J. Trujillo, Pierre R. Berub, Greg Leslie.,2019. Numerical and experimental investigation of pulse bubble aeration with high packing density hollow-fibre MBRs. Water Research 160 (2019) 60-69.
Fang, H.H., &Shi, X. (2005). Pore fouling of microfiltration membranes by activated sludge. Journal of Membrane Science,264(1),161-166.
Fernandez, A., J. Lozier, and G. Daigger: “Investigating Membrane Bioreactor Operation for Domestic Wastewater Treatment: A Case Study,” Municipal Wastewater Treatment Symposium: Membrane Treatment Systems, proceedings, 73rd Annual Conference, Water Environment Federation, Anaheim, Ca, 2000.
Fulton, B.G.; Bérubé, P.R. Optimizing the sparging condition and membrane module spacing for a ZW500 submerged hollow fiber membrane system. Desalination Water Treat. 2012, 42, 8–16.
Jankhah S and Bérubé PR, Pulse bubble sparging for fouling control. Sep Purif Technol 134: 58-65 (2014).
Khor, S. L, et al.:” Biofouling Development and Rejection Enhancement in Long SRT MF Membrane Bioteactors,” Proc. Biochem. 42, pp.1641-1642,2007.
Lee YK, Won Y-J, Yoo JH, Ahn KH and Lee C-H, Flow analysis and fouling on the patterned membrane surface. J Membr Sci 427: 320-325 (2013).
Lewis WJT, Chew YMJ and Bird MR, The application of fluid dynamic gauging in characterising cake deposition during the cross-flow microfiltration of a yeast suspension. J Membr Sci 405–406: 113-122 (2012).
Li T, Nagaoka H, Itonaga T and Nakahara Y, Estimation of shear stress working on submerged vertically set hollow fibre membrane in MBRs. Journal of Water Supply: Research & Technology-AQUA 59 (2010).
Lin, C.-J.; Rao, P.; Shirazi, S. Effect of operating parameters on permeate flux decline caused by cake formation—A model study. Desalination 2005, 171, 95–105.
Lister VY, Lucas C, Gordon PW, Chew YMJ and Wilson DI, Pressure mode fluid dynamic gauging for studying cake build-up in cross-flow microfiltration. J Membr Sci 366: 304-313 (2011).
Liu X, Wang Y, Waite TD and Leslie G, Fluid Structure Interaction analysis of lateral fibre movement in submerged membrane reactors. J Membr Sci 504:240-250 (2016).
Martinelli L, Guigui C and Line A, Characterisation of hydrodynamics induced by air injection related to membrane fouling behaviour. Desalination 250:587-591 (2010).
Mattsson T, Lewis WJT, Chew YMJ and Bird MR, In situ investigation of soft cake fouling layers using fluid dynamic gauging. Food Bioprod Process 93:205-210 (2015).
Metcalf and Eddy, Inc.: Wastewater Engineering, McGraw-Hill Book Company, New York,2003.
Ndinisa NV, Fane AG, Wiley DE and Fletcher DF, Fouling Control in a Submerged Flat Sheet Membrane System: Part II — Two ‐ Phase Flow Characterization and CFD Simulations. Sep Sci Technol 41: 1411-1445 (2006).
Pasmore, M.; Todd, P.; Smith, S.; Baker, D.; Silverstein, J.; Coons, D.; Bowman, C.N. Effects of ultrafiltration membrane surface properties on pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J. Membr. Sci. 2001, 194, 15–32.
Paul James Smith, Saravanamuth Vigneswaran, Huu Hao Ngo, Roger Ben-Aimb, Hung Nguyen., 2006. A new approach to backwash initiation in membrane systems. Journal of Membrane Science 278 (2006) 381–389.
Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471.
Rios N, Nopens I, De Schepper V, Jiang T, Verstraete W and Vanrolleghem P, A rheological model for activated sludge in a Side-Stream MBR. IWA, Harrogate,UK (2007).
Sun, D. D., C. T. Hay, and S. L. Khor: “Effects of Hydraulic Retention Time on Behavior of Start-up Submerged Membrane Bioreactor with Prolonged Sludge Reyention Time,” Desalination, 195, pp.209-225,2006.
Sun, D. D., et al. “Impact of Prolonged Sludge Retention Time on the Performance of a Submerged Membrance Bioreactor,” Desalination, 208, Elseveier, pp. 101-112,2007.
Tung, K.-L.; Damodar, H.-R.; Damodar, R.-A.; Tsai, J.-H.; Chen, C.-H.; You, S.-J.; Huang, M.-S. Imaging the effect of aeration on particle fouling mitigation in a submerged membrane filtration using a photointerrupt sensor array. Sep. Sci. Technol. 2017, 52, 228–239.
Wang, J.; Fane, A.G.; Chew, J.W. Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants. J. Membr. Sci. 2017, 535, 279–293.
Wei P, Zhang K, Gao W, Kong L and Field R, CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor. J Membr Sci 445: 15-24 (2013).
Wibisono, Y.; Cornelissen, E.R.; Kemperman, A.J.B.; Van Der Meer, W.G.J.; Nijmeijer, K. Two-phase flow in membrane processes: A technology with a future. J. Membr. Sci. 2014, 453, 566–602.
Wicaksana, F.; Fane, A.G.; Chen, V. Fibre movement induced by bubbling using submerged hollow fibre membranes. J. Membr. Sci. 2006, 271, 186–195.
Xia, L.; Law, A.W.-K.; Fane, A.G. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor. Water Res. 2013, 47, 3762–3772.
Xing Du, Yuan Wang, Greg Leslie, Guibai Li, Heng Liang., 2017. Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: a review. J. Chemical technology and biotechnology. Sci. 54-57.
Ye D, Saadat-Sanei S and Bérubé PR, Pulse bubble sparging for the control of hydraulically reversible fouling in submerged hollow fiber membrane systems. Sep Purif Technol 123: 153-163 (2014).
Yeo APS, Law AWK and Fane AG, The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry. J Membr Sci 304: 125-137 (2007).
Yeom, I.-T.; Nah, Y.-M.; Ahn, K.-H. Treatment of household wastewater using an intermittently aerated membrane bioreactor. Desalination 1999, 124, 193–203.
Zhang, J., Chua, H.C., Zhou, J., &Fane, A. G (2006). Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science,284(1),54-66.
工業污染防治第 109 期(June 2009) |