博碩士論文 109326018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.147.193.219
姓名 薛凱澤(Kai-Tse Hsueh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水污泥與沼渣共同氣化產能效率及其 污染物排放特性之研究
(Characterization of Energy yield and pollutant emission in co-gasification of sewage sludge and anaerobic digestate)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-5-20以後開放)
摘要(中) 本研究主要探討下水污泥(Sewage sludge)與厭氧沼渣(Anaerobic digestate)共同氣化處理之可行性,實驗條件分別控制當量比(equivalence, ER)、氣化溫度(700 ~ 900°C)與摻混比例(1:1、2:1、3:1、1:2及1:3)等。同時根據產氣組成之變化,評估共同氣化反應過程之產能效率、產物分布特性,以及硫、氯污染物排放特性。
根據實驗室規模之流體化床試驗結果顯示,下水污泥及沼渣個別進行氣化反應,隨反應溫度由700°C增加至900℃時,其氫氣產生比例,分別由3.69 vol.%增加至19.05 vol.%,及3.11 vol.%增加至14.54 vol.%。在氣化反應穩定階段,下水污泥及沼渣產氣平均熱值,隨反應溫度由700°C增加至900℃時,分別從3.48MJ/Nm3增加至6.62 MJ/Nm3以及2.35MJ/Nm3增加至7.10 MJ/Nm3;冷燃氣效率則分別從16.32%增加至31.10%及11.87%增加至35.88%。根據能源轉換之結果,提高氣化溫度有助於Boudouard反應、水氣(Water-gas)反應及焦油裂解等吸熱反應作用進行。
下水污泥及沼渣共同氣化反應之試驗結果顯示,氣化反應溫度為900°C,隨著沼渣之摻混比例增加,產氣熱值呈現增加之趨勢,其中在下水污泥與沼渣比例為3:1之條件下,最大氫氣產率為19.07 vol%;當下水污泥與沼渣比例為1:3之條件下,最大產氣熱值為6.98 MJ/Nm3,且冷燃氣效率可達到最高34.60%。整體而言,控制不同沼渣與下水污泥之摻混比,總能源回收效率約介於30.25% ~ 47.28%。根據氣化產物之硫及氯分布特性結果可知,在氣化反應溫度900℃時,共同氣化之氣相產物中硫及氯之分布比例,皆高於80%以上,其中硫化氫之排放濃度分別為227.64 ppm(沼渣)、177.66 ppm(下水污泥)及201.2 ppm(下水污泥:沼渣1:3),可見後續須規劃妥適之空氣污染控制技術予以收集去除。
整體而言,根據本研究成果已初步驗證下水污泥與沼渣,具有共同氣化處理之可行性,相關產氣熱值亦能提供未來氣化處理廠內之能源需求來源,達到能源自主供應之效果。透過本研究之試驗分析結果,可提供作為未來相關厭氧消化後之殘餘物,轉換能源應用技術及污染物排放控制之參考依據。
摘要(英) This research investigates the evaluation of energy conversion, gasification products partitioning characteristics, and trace pollutants (e.g., sulfur and chlorine) in co-gasification of sewage sludge (SS) and anaerobic digestate (AD) using fluidized bed gasifier with controlling equivalence, temperature (700~900°C), blending ratio of 1:1, 2:1, 3:1, 1:2 and 1:3 at 900°C.
In the case of SS gasification, the hydrogen production was increased from 3.69 vol.% to 19.05 vol.% with the temperature rising from 700°C to 900°C. Meanwhile, hydrogen production increased from 3.11 vol.% to 14.54 vol.% in AD gasification. It implied that hydrogen production increased with an increase in temperature. The heating value of product gas was increased from 3.48 MJ/Nm3 to 6.62 MJ/Nm3 and 2.35 MJ/Nm3 to 7.10 MJ/Nm3, respectively. The cold gas efficiency (CGE) significantly increased from 16.32% to 31.10% and 11.87% to 35.88%, respectively. Based on the results of energy conversion efficiency, increasing the temperature will enhance the endothermic reactions such as the Boudouard reaction, water-gas reaction, and tar cracking.
In the case of SS and AD co-gasification with a temperature of 900°C, increasing the AD addition ratio could enhance the produced gas heating value. In the case of SS: AD = 3:1, the maximum hydrogen production was 19.07%. In the case of SS: AD = 1:3, the maximum gas heating value was 6.98 MJ/Nm3, and the CGE was 34.60%. The total energy recovery rate ranged between 30.25% and 47.28% in the co-gasification of SS and AD. According to the results of the sulfur and chlorine emission characteristics. In the case of SS and AD co-gasification, the sulfur and chlorine partitioning in the gas phase was above 80%. In the case of AD, SS, and SS: AD = 1:3, the concentration of hydrogen sulfide in the syngas were 227.64 ppm, 177.66 ppm, and 201.2 ppm, respectively. Air pollution control technologies must be planned to reduce the chloride and sulfide emissions in the syngas.
In summary, the experimental results verified that sewage sludge and anaerobic digestate could be used as co-gasification materials and feasibility of improving energy yields. Therefore, the results of this study could provide good information for energy conversion technologies′ selection of digestate after the anaerobic digestion process.
關鍵字(中) ★ 沼渣
★ 下水污泥
★ 氣化
★ 合成氣
★ 硫化氫
關鍵字(英) ★ anaerobic digestate
★ sewage sludge
★ gasification
★ syngas
★ hydrogen sulfide
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 前言 1
第二章 文獻回顧 5
2-1 沼渣及下水污泥處理現況分析 5
2-1-1 沼渣特性與處理技術 5
2-1-2 下水污泥特性與處理技術 7
2-2氣化技術原理及應用探討 13
2-2-1 氣化反應機制之探討 14
2-2-2 生質物特性對氣化反應之影響 17
2-2-3 氣化操作條件對產氣效率的影響 21
第三章 研究材料與方法 29
3-1 實驗材料 29
3-1-1 厭氧沼渣 29
3-1-2 下水污泥 30
3-2 實驗設備及操作條件 31
3-2-1氣化爐體設備 31
3-2-2後端焦油以及污染物吸收設備 32
3-2-3氣化操作條件 33
3-3 反應動力分析 36
3-4 分析項目與方法 37
3-4-1原料基本特性分析 37
3-4-2氣化產物分析 41
第四章 結果與討論 47
4-1 原料基本特性分析 47
4-1-1 沼渣之基本特性分析 47
4-1-2 下水污泥之基本特性分析 48
4-2 沼渣與下水污泥之熱動力分析 51
4-2-1 熱重損失之分析結果 51
4-2-2 反應活性及活化能之分析結果 53
4-3 沼渣與下水污泥於不同溫度之氣化結果 69
4-3-1沼渣與下水污泥氣化之產物質量平衡 69
4-3-2沼渣與下水污泥氣化之產氣組成變化 80
4-3-3沼渣與污泥氣化之液相產物特性分析 89
4-3-4沼渣與污泥氣化之固相產物特性分析 94
4-4摻混比例對沼渣與下水污泥共同氣化之影響 101
4-4-1沼渣與下水污泥共同氣化之產物質量平衡 101
4-4-2沼渣與下水污泥共同氣化之產氣組成變化 110
4-4-3沼渣與下水污泥共同氣化之液相產物特性分析 116
4-4-4沼渣與下水污泥共同氣化之固相產物特性分析 121
4-5 沼渣與下水污泥氣化之產能效率評估 127
4-5-1沼渣與下水污泥氣化合成氣產能效率評估 127
4-5-2沼渣與下水污泥氣化能量分布特性 132
4-6 沼渣與下水污泥氣化之硫、氯分布特性 137
4-6-1 氣化產物之硫分布特性 137
4-6-2 氣化產物之氯分布特性 140
第五章 結論與建議 143
5-1 結論 143
5-1-1 沼渣與下水污泥基本特性及反應動力特性 143
5-1-2 氣化溫度對於沼渣與下水污泥之氣化產物與產能效率結果 143
5-1-3 摻混比例對於沼渣與下水污泥之氣化產物與產能效率結果 144
5-1-4 溫度與摻混比例對污染物分布特性之影響 145
5-2 建議 146
參考文獻 147
附 錄 157
參考文獻 參考文獻
Ahmed, I.I., Nipattummakul, N., Gupta, A.K., 2011.
Characteristics of syngas from co-
gasification of polyethylene and woodchips. Applied Energy 88, 165-174.
Aydar, E., Gul, S., Unlu, N., Akgun, F., Livatyali, H., 2014. Effect of the type of
gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of
the Energy Institute 87, 35-42.
Bandara, J.C., Jaiswal, R., Nielsen, H.K., Moldestad, B.M.E., Eikeland, M.S., 2021. Air
gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized
bed reactor. Energy 233, 121149.
Barco-Burgos, J., Carles-Bruno, J., Eicker, U., Saldana-Robles, A.L., Alcántar-
Camarena, V., 2021. Hydrogen-rich syngas production from palm kernel shells
(PKS) biomass on a downdraft allothermal gasifier using steam as a gasifying
agent. Energy Conversion and Management 245, 114592.
Basha, M.H., Sulaiman, S.A., Uemura, Y., 2020. Co-gasification of palm kernel shell
and polystyrene plastic: Effect of different operating conditions. Journal of the
Energy Institute 93, 1045-1052.
Basu, P., 2018. Chapter 7 - Gasification Theory, in: Basu, P. (Ed.), Biomass Gasification,
Pyrolysis and Torrefaction (Third Edition). Academic Press, pp. 211-262.
Bhaskar, T., Salbidegoitia, J., Fuentes, E., González-Marcos, M.P., González-Velasco,
J., Bhaskar, T., Kamo, T., 2015. Steam gasification of printed circuit board from
e-Waste: Effect of coexisting nickel to hydrogen production. Fuel Processing
Technology 133.
Cao, Z., Jung, D., Olszewski, M.P., Arauzo, P.J., Kruse, A., 2019. Hydrothermal
carbonization of biogas digestate: Effect of digestate origin and process
conditions. Waste Management 100, 138-150.
Chang, S., Zhang, Z., Cao, L., Ma, L., You, S., Li, W., 2020. Co-gasification of digestate
and lignite in a downdraft fixed bed gasifier: Effect of temperature. Energy
Conversion and Management 213, 112798.
Chen, A., Tian, Z., Han, R., Wei, X., Hu, R., Chen, Y., 2021a. Preparation of Ni-based
steel slag catalyst by impregnation method for sludge steam gasification.
Sustainable Energy Technologies and Assessments 47, 101553.
Chen, G.-B., Wu, F.-H., Fang, T.-L., Lin, H.-T., Chao, Y.-C., 2021b. A study of Co-
gasification of sewage sludge and palm kernel shells. Energy 218, 119532.
Chen, G., Guo, X., Cheng, Z., Yan, B., Dan, Z., Ma, W., 2017. Air gasification of biogas-
derived digestate in a downdraft fixed bed gasifier. Waste Management 69, 162-
169.
Chen, Z., Shi, Y., Lai, D., Gao, S., Shi, Z., Tian, Y., Xu, G., 2016. Coal rapid pyrolysis
in a transport bed under steam-containing syngas atmosphere relevant to the
integrated fluidized bed gasification. Fuel 176, 200-208.
Collard, M., Teychené, B., Lemée, L., 2017. Comparison of three different wastewater
sludge and their respective drying processes: Solar, thermal and reed beds –
Impact on organic matter characteristics. Journal of Environmental Management
203, 760-767.
de Andrés, J.M., Narros, A., Rodríguez, M.E., 2011. Air-steam gasification of sewage
sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst. Fuel
Processing Technology 92, 433-440.
de Andrés, J.M., Narros, A., Rodríguez, M.E., 2016. Air-steam gasification of sewage
sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst. Fuel
Processing Technology 92, 433-440.
Dussan, K., Monaghan, R., 2017. Thermodynamic Modelling of Energy Recovery
Options from Digestate at Wastewater Treatment Plants.EPA Resarch 216 , 60-63.
Freda, C., Cornacchia, G., Romanelli, A., Valerio, V., Grieco, M., 2018. Sewage sludge
gasification in a bench scale rotary kiln. Fuel 212, 88-94.
Freda, C., Nanna, F., Villone, A., Barisano, D., Brandani, S., Cornacchia, G., 2019. Air
gasification of digestate and its co-gasification with residual biomass in a pilot
scale rotary kiln. International Journal of Energy and Environmental Engineering
10, 335-346.
Gao, M., Zhang, S., Ma, X., Guan, W., Song, N., Wang, Q., Wu, C., 2020. Effect of yeast
addition on the biogas production performance of a food waste anaerobic
digestion system. R Soc Open Sci 7, 200443.
Gorgec, A., Insel, G., Yagci, N., Dogru, M., Erdinçler, A., Sanin, D., Filibeli, A.,
Keskinler, B., Cokgor, E., 2016. Comparison of energy efficiencies for advanced
anaerobic digestion, incineration, and gasification processes in municipal sludge
management. Journal of Residuals Science & Technology, Vol. 13, No. 13, 57-64.
Guan, G., Kaewpanha, M., Hao, X., Abudula, A., 2016. Catalytic steam reforming of
biomass tar: Prospects and challenges. Renewable and Sustainable Energy
Reviews 58, 450-461.
Hossain, A.K., Serrano, C., Brammer, J.B., Omran, A., Ahmed, F., Smith, D.I., Davies,
P.A., 2016. Combustion of fuel blends containing digestate pyrolysis oil in a
multi-cylinder compression ignition engine. Fuel 171, 18-28.
Hu, Q., Dai, Y., Wang, C.-H., 2020. Steam co-gasification of horticultural waste and
sewage sludge: Product distribution, synergistic analysis and optimization.
Bioresource Technology 301, 122780.
Hurley, S., Xu, C., Preto, F., Shao, Y., Li, H., Wang, J., Tourigny, G., 2012. Catalytic
gasification of woody biomass in an air-blown fluidized-bed reactor using
Canadian limonite iron ore as the bed material. Fuel 91, 170-176.
Jamro, I.A., Chen, G., Baloch, H.A., Wenga, T., Ma, W., 2022. Optimization of
municipal solid waste air gasification for higher H2 production along with the
validation via kinetics and statistical approaches. Fuel 322, 124137.
Jayaraman, K., Gökalp, I., 2015. Pyrolysis, combustion and gasification characteristics
of miscanthus and sewage sludge. Energy Conversion and Management 89, 83-
91.
Jiang, L., Yuan, X.-Z., Li, H., Chen, X.-h., Xiao, Z., Liang, J., Leng, L.-j., Guo, Z., Leng,
L., 2016. Co-pelletization of sewage sludge and biomass: Thermogravimetric
analysis and ash deposits. Fuel Processing Technology 145, 109-115.
Kakati, U., Sakhiya, A.K., Baghel, P., Trada, A., Mahapatra, S., Upadhyay, D., Kaushal,
P., 2022. Sustainable utilization of bamboo through air-steam gasification in
downdraft gasifier: Experimental and simulation approach. Energy 252, 124055.
Karl, J., Pröll, T., 2018. Steam gasification of biomass in dual fluidized bed gasifiers: A
review. Renewable and Sustainable Energy Reviews 98, 64-78.
Katsaros, G., Pandey, D.S., Horvat, A., Aranda Almansa, G., Fryda, L.E., Leahy, J.J.,
Tassou, S.A., 2020. Experimental investigation of poultry litter gasification and
co-gasification with beech wood in a bubbling fluidised bed reactor – Effect of
equivalence ratio on process performance and tar evolution. Fuel 262, 116660.
Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N., Kim, J.,
Chang, S.W., Hong, Y., Duc La, D., Nguyen, X.C., Hao Ngo, H., Chung, W.J.,
Nguyen, D.D., 2021. Review on pretreatment techniques to improve anaerobic
digestion of sewage sludge. Fuel 285, 119105.
Kończak, M., Siatecka, A., Nazarkovsky, M.A., Czech, B., Oleszczuk, P., 2021. Sewage
sludge and solid residues from biogas production derived biochar as an effective
bio-waste adsorbent of fulvic acids from water or wastewater. Chemosphere 278,
130447.
Latosińska, J., Kowalik, R., Gawdzik, J., 2021. Risk Assessment of Soil Contamination
with Heavy Metals from Municipal Sewage Sludge. Applied Sciences 11.
Li, S., Zhao, A., Chen, Q., Cao, Y., Xie, Y., Wang, J., Ao, X., 2022. Effect of microwave
pretreatment on catalytic gasification of spirit-based distillers’ grains to hydrogen-
rich syngas. Waste Management 149, 239-247.
Luo, S., Zhou, Y., Yi, C., 2012. Syngas production by catalytic steam gasification of
municipal solid waste in fixed-bed reactor. Energy 44, 391-395.
Makádi, M., Tomócsik, A., Orosz, V., 2012. Digestate: A New Nutrient Source - Review,
University of Debrecen, pp. 295-310.
Meng, F., Ma, Q., Wang, H., Liu, Y., Wang, D., 2019. Effect of gasifying agents on
sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel
249, 112-118.
Mohammed, M.A.A., Salmiaton, A., Wan Azlina, W.A.K.G., Mohammad Amran, M.S.,
Fakhru’l-Razi, A., 2011. Air gasification of empty fruit bunch for hydrogen-rich
gas production in a fluidized-bed reactor. Energy Conversion and Management
52, 1555-1561.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The
state of the art overview. Journal of Energy Chemistry 25, 10-25.
Motta, I.L., Miranda, N.T., Maciel Filho, R., Wolf Maciel, M.R., 2018. Biomass
gasification in fluidized beds: A review of biomass moisture content and operating
pressure effects. Renewable and Sustainable Energy Reviews 94, 998-1023.
N Ramzan, M.A., Sharmina BegumSharmina Begum, S Ahmad, S Naveed, 2015.
Simulation of circulating fluidized bed gasification for characteristic study of
Pakistani coal. CQUniversity. Journal contribution, 10018/1043438.
Nagy, G., Dobó, Z., 2020. Experimental investigation of fixed-bed pyrolysis and steam
gasification of food waste blended with woody biomass. Biomass and Bioenergy
139, 105580.
Nguyen, V.T., Chiang, K.Y., 2021. Sewage and textile sludge co-gasification using a
lab-scale fluidized bed gasifier. International Journal of Hydrogen Energy.
Oni, B.A., Sanni, S.E., Ikhazuangbe, P.M.-O., Ibegbu, A.J., 2021. Experimental
investigation of steam-air gasification of Cymbopogon citratus using
Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and
hydrogen production. Energy 237, 121542.
Pranolo, S.H., Waluyo, J., Paryanto, Susanti, A.D., Permana, R.B., Erwanda, I.,
Delayaski, N., Alhaq, A.l.I., Putro, F.A., 2022. Feasible tar cleaning method of
producer gas from palm kernel shell and mahogany fruit shell gasification.
Materials Today: Proceedings.
Ramos, A., Monteiro, E., Rouboa, A., 2019. Numerical approaches and comprehensive
models for gasification process: A review. Renewable and Sustainable Energy
Reviews 110, 188-206.
Ramos, A., Monteiro, E., Silva, V., Rouboa, A., 2018. Co-gasification and recent
developments on waste-to-energy conversion: A review. Renewable and
Sustainable Energy Reviews 81, 380-398.
Salman, C.A., Schwede, S., Thorin, E., Li, H., Yan, J., 2019. Identification of
thermochemical pathways for the energy and nutrient recovery from digested
sludge in wastewater treatment plants. Energy Procedia 158, 1317-1322.
Schmid, J., Benedikt, F., Fuchs, J., Mauerhofer, A., Müller, S., Hofbauer, H., 2018. Fuel
Flexible Gasification with an Advanced 100 kW Dual Fluidized Bed Steam
Gasification Pilot Plant. Energy.
Sharma, A., Matsumura, A., Takanohashi, T., 2015. Effect of CO2 addition on gas
composition of synthesis gas from catalytic gasification of low rank coals. Fuel
152, 13-18.
Shen, Y., 2015. Chars as carbonaceous adsorbents/catalysts for tar elimination during
biomass pyrolysis or gasification. Renewable and Sustainable Energy Reviews 43,
281-295.
Sikarwar, V.S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N.,
Anthony, E.J., Fennell, P.S., 2016. An overview of advances in biomass
gasification. Energy & Environmental Science 9, 2939-2977.
Singh, D., Yadav, S., Bharadwaj, N., Verma, R., 2020. Low temperature steam
gasification to produce hydrogen rich gas from kitchen food waste: Influence of
steam flow rate and temperature. International Journal of Hydrogen Energy 45,
20843-20850.
Slezak, R., Krzystek, L., Ledakowicz, S., 2019. Steam gasification of pyrolysis char
from spent mushroom substrate. Biomass and Bioenergy 122, 336-342.
Tremel, A., Hartmut, S., 2013. Gasification kinetics during entrained flow gasification
– Part I; Devolatilisation and char deactivation. Fuel 103, 663–671.
Wang, J., Feringa, B.L., 2011. Dynamic control of chiral space in a catalytic asymmetric
reaction using a molecular motor. Science 331, 1429-1432.
Werle, S., 2015. Gasification of a Dried Sewage Sludge in a Laboratory Scale Fixed Bed
Reactor. Energy Procedia 66, 253-256.
Wiyono, A., Saw, L.H., Anggrainy, R., Husen, A.S., Purnawan, Rohendi, D., Gandidi,
I.M., Adanta, D., Pambudi, N.A., 2021. Enhancement of syngas production via
co-gasification and renewable densified fuels (RDF) in an open-top downdraft
gasifier: Case study of Indonesian waste. Case Studies in Thermal Engineering
27, 101205.
Zat, T., Bandieira, M., Sattler, N., Segadães, A.M., Cruz, R.C.D., Mohamad, G.,
Rodríguez, E.D., 2021. Potential re-use of sewage sludge as a raw material in the
production of eco-friendly bricks. J Environ Manage 297, 113238.
Zhang, J., Hu, Q., Qu, Y., Dai, Y., He, Y., Wang, C.-H., Tong, Y.W., 2020. Integrating
food waste sorting system with anaerobic digestion and gasification for hydrogen
and methane co-production. Applied Energy 257, 113988.
Zhang, L., Xu, C., Champagne, P., 2010. Overview of recent advances in thermo-
chemical conversion of biomass. Energy Conversion and Management 51, 969-
982.
Zhang, X.P., Zhang, C., Li, X., Yu, S.H., Tan, P., Fang, Q.Y., Chen, G., 2018. A two-
step process for sewage sludge treatment: Hydrothermal treatment of sludge and
catalytic hydrothermal gasification of its derived liquid. Fuel Processing
Technology 180, 67-74.
內政部營建署,下水道工程處公布統計資料,網址:
https://sewergis.cpami.gov.tw/sewersso/Default.aspx,網頁擷取日期:2022年6

台中市政府環境保護局;禾山林綠能股份有限公司,外埔綠能生態園區簡報,擷取
日期:2022年5月
江康鈺,陳雅馨,葛家賢,呂承翰,都市下水污泥轉換能源技術之回顧與評析,
工業污染防治,Vol. 128,pp.31-64,2014
行政院環境保護署,公務統計報表後查詢,網址:
https://www.epa.gov.tw/Page/DFC991177B336CFE/d021bd1e-0b4f-43d6-a3b2-
33290c955fb3,網頁擷取日期:2022年四月
行政院環保署環境檢驗所,廢棄物含水分測定方法¬¬-間接測定法,NIEA R203.01T。
行政院環保署環境檢驗所,廢棄物中灰分、可燃分測定方法,NIEA R205.01C。
行政院環保署環境檢驗所,廢棄物熱值檢測方法-燃燒彈熱卡計法,NIEA
R214.01C。
行政院環保署環境檢驗所,沉積物、污泥及油脂中金屬元素總量之檢測方法-微波
消化原子光譜法,NIEA R355.00C。
行政院環保署環境檢驗所,廢棄物中碳、氫、硫、氧、氮元素含量檢測方法-元素
分析儀法,NIEA R409.21C。
吳東翰,廢車破碎殘餘物與漿紙污泥共同氣化之可行性研究,國立中央大學環境
工程研究所,碩士論文,2021
李玉蓮,煅燒白雲石降低廢車破碎殘餘物催化氣化過程衍生污染物排放之可行性
研究,國立中央大學環境工程研究所,碩士論文,2016
陳又新,江康鈺,呂承翰,下水污泥與工業區廢水污泥共同蒸汽氣化產能效率與
重金屬分布特性之研究,中華民國環境工程學會2018廢棄物處理技術研討
會,2018。
翁振源,污泥灰渣資源化製磚與燒結特性之研究,國立成功大學資源工程學系,
碩士論文,2016
梁登凱,江康鈺,咖啡殘渣蒸氣氣化提升產能效率之可行性研究,中華民國環境
工程學會2020廢棄物處理技術研討會,2021。
程淑芬,下水道污泥含磷調查及最佳磷回收量之研究,內政部營建署下水道工程
處,2013
經濟部能源局,2020產業能源科技白皮書,2020
羅勻聘,江康鈺,呂佳明,黃永吉,張木彬,漿紙污泥與廢車破碎殘餘物共同氣
化產能評估與污染物排放特性建立之實廠驗證研究,中華民國環境工程學
會2019廢棄物處理技術研討會,2019
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2022-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明