博碩士論文 108326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.147.193.219
姓名 游岱軒(Tai-Xuan YOU)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 萃取回收都市垃圾焚化飛灰中重金屬之可行性研究
(Feasibility of Extraction and Recovery of Heavy Metals from Municipal Solid Waste Incineration (MSWI) Fly Ash)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-5-20以後開放)
摘要(中) 本研究利用酸萃取技術,探討都市垃圾焚化飛灰無害化及重金屬回收之可行性,第一階段研究以 1 N 硫酸與焚化飛灰進行混合,攪拌轉速調整為 50 rpm,並控制萃取溶液 pH 值(2、3、4 及 5)且保持恆定,以及設定萃取時間(30、60、90 及 120 分鐘),再根據重金屬萃取之總量分析結果,評
估最佳萃取條件。第二階段研究 0.25 N 氫氧化鈉溶液控制 pH=10 之條件下,評估化學沉澱反應形成鉛、鋅及銅重金屬化合物之回收率及純度。研
究結果顯示,較低之 pH 值易使重金屬溶出,其中 pH=2 萃取 60 min 之條件下,鉛、鋅及銅萃取率分別為 10.83%、27.16%及 19.89%。根據XRD 物種鑑定及模式模擬之物種分析結果得知,在 pH 值小於 5 之條件下,鋅及銅化合物較容易被溶解,其中銅可能形成少量之氧氯化銅及硫化亞銅沉澱,鉛則主要以二氧化鉛存在。此外,硫酸根離子會與鉛形成硫酸鉛沉澱,因此,硫酸較不易萃取鉛金屬,其萃取率均較其他重金屬為低。進一步評估前述條件下,重金屬鉛、鋅及銅之回收成效,當 pH 值控制在 10時,鉛、
鋅及銅之回收率分別為 12.90%、31.12%及 25.59%,其中重金屬鋅回收純
度最佳,約為 19.98%。
根據毒性溶出試驗結果顯示,經 pH=2 萃取 60 min 後之焚化飛灰,鉛溶出濃度從 36.21 mg/L 降至 0.79 mg/L,其餘重金屬溶出濃度皆低於法規管制標準,可見本研究焚化飛灰經酸萃取後,已達無害化之目的。進一步根據序列萃取之相態分布特性結果顯示,焚化飛灰中易溶出之可交換態含量較高,酸萃取後之焚化飛灰相態,已轉換為較穩定之相態,其中 pH=2 萃取 60 min 之條件下,飛灰中重金屬相態已從可交換態及碳酸鹽結合態轉換為較穩定之鐵錳氧化態、有機物結合態及殘餘態。本研究嘗試以風險評估指標(RAC),評估酸萃取後之飛灰在環境中之相對風險程度,結果顯示焚化飛灰可交換態含量高,鉛、鋅及銅之 RAC 風險指數分別為 27.42、87.55及 60.30,故屬於高風險,而經 pH=2 萃取 60 min 條件後,可使飛灰中鉛、鋅及銅金屬風險指數,分別降至 19.16、18.74 及 2.08,相對風險性已從高風險降至中低風險之特性。
整體而言,本研究已初步驗證酸萃取技術,可有效將焚化飛灰之重金
屬萃取與回收,且萃取後焚化飛灰之重金屬相態已轉換為較穩定之相態,
同時達到無害化與降低後續處理處置之環境風險。
摘要(英) This research investigated the feasibility of non-hazardous and heavy metal recovery of municipal solid waste incineration (MSWI) fly ash by acid extraction. In the first stage of this research, 1 N sulfuric acid was mixed with fly ash and controlled the stirring speed at 50 rpm. Meanwhile the pH value adjusted ranged between 2 and 5, and operated the extraction time at 30, 60, 90, and 120 minutes.In the second stage, the recovery rate and purity of lead, zinc, and copper compounds formed by chemical precipitation with controlling pH=10 by adding 0.25 N sodium hydroxide solution. The results showed that the lower pH value is easy to dissolve heavy metals. In the case of pH=2 and the extraction time was 60 minutes, the extraction rates of lead, zinc, and copper were 10.83%, 27.16%,and 19.89%, respectively. According to the results of metal speciation identified by XRD and simulated by the model, zinc and copper compounds were more easily dissolved in the case of pH values less than 5. Copper may form copper oxychloride and copper sulfide precipitates, and lead was mainly presented as lead dioxide. In addition, sulfate ions would react with lead to form lead sulfate precipitation. Therefore, sulfuric acid was more difficult to extract lead, and its extraction rate was lower than other heavy metals. Further evaluation of the recovery efficiency of heavy metals lead, zinc, and copper under the above conditions, the recovery rates of lead, zinc, and copper were 12.90%, 31.12%,and 25.59%, respectively. The purity of zinc recovered from the extraction solution was approximately 19.98%.
According to the results of toxicity characteristics leaching procedure (TCLP), in the case of pH=2 and extraction time was 60 minutes, lead TCLP concentration decreased from 36.21 mg/L to 0.79 mg/L, and the leaching concentrations of other heavy metals were lower than the regulatory standards.Therefore, MSWI fly ash used in this research had achieved the purpose of nonhazardous treatment after acid extraction process. The sequential extraction
further analyzed the phase characteristics of fly ash. The results showed that the content of exchangeable phase in the fly ash was relatively high. However, extracted fly ash′s metal phase distribution converted to a more stable phase
states after acid extraction. In the case of pH=2 and extraction time was 60 minutes, the exchangeable phase and the carbonate-bound phase in the fly ash were dissolved and converted to the more stable Fe/Mn oxide phase, organic
phase and residual phase. This research attempted to use the risk assessment code(RAC) to evaluate the relative environmental risk of fly ash after acid extraction.The analysis results showed that the RAC indices of lead, zinc, and copper were 27.42, 87.55, and 60.30. It implied that fly ash was considered a high-risk hazardous waste. In the case of pH=2 and extraction time was 60 minutes, the RAC indices of lead, zinc, and copper in fly ash decreased to 19.16, 18.74, and 2.08. That is, the extracted fly ash was presented with relative medium and lowrisk characteristics.
關鍵字(中) ★ 焚化飛灰
★ 重金屬
★ 酸萃取技術
★ 金屬回收
關鍵字(英) ★ MSWI fly ash
★ heavy metals
★ acid extraction
★ metal recovery
論文目次 目錄
摘要......................................... i
Abstract .........................................iii
致謝...................... v
目錄.................................... vii
圖目錄............................ xi
表目錄......................xiii
第一章 前言........................................... 1
第二章 文獻回顧..................................... 5
2-1 國內飛灰處理技術之現況.................................. 5
2-2 焚化飛灰性質與特性........................... 12
2-2-1 焚化飛灰金屬總量與溶出特性 ..... 13
2-2-2 焚化飛灰之鍵結型態.............. 17
2-2-3 環境風險評估指標.............................. 19
2-3 酸萃取技術之關鍵操作條件.......................... 20
2-3-1 萃取劑對飛灰中金屬溶出之影響 ......... 21
2-3-2 pH 值對飛灰中金屬溶出之影響................ 24
2-3-3 萃取時間對飛灰中金屬溶出之影響 ......... 26
2-4 金屬回收之可行性...................................... 28
第三章 實驗材料與方法............................. 35
3-1 實驗材料........................................ 35
3-2 實驗條件及流程.......................... 36
3-2-1 焚化飛灰基本特性分析................ 38
3-2-2 酸萃取試驗.............................. 38
3-2-3 回收金屬試驗................ 40
3-3 實驗儀器............................. 41
3-4 分析方法.............................. 43
第四章 結果與討論......................... 53
4-1 研究材料基本特性分析結果............................. 53
4-2 飛灰酸萃取分析結果................................... 57
4-2-1 飛灰酸萃取之液固比分析............................. 57
4-2-2 飛灰酸萃取後之總質量變化 .......................... 58
4-2-3 飛灰酸萃取後氯溶出分析 ................ 60
4-2-4 飛灰酸萃取後硫酸根離子分析 .............. 62
4-2-5 重金屬質量變化分析................................ 63
4-2-6 重金屬萃取率分析............................... 79
4-3 飛灰重金屬回收分析結果........................... 87
4-3-1 重金屬回收總量分析................................ 87
4-3-2 金屬回收率及純度分析................................... 90
4-3-3 金屬鋅回收之經濟價值分析 ................... 94
4-4 飛灰酸萃取後無害化評估........................... 95
4-4-1 飛灰酸萃取後之物種鑑定........................... 96
4-4-2 模擬金屬溶出特性之分析結果 ...................... 100
4-4-3 飛灰酸萃取後之毒性溶出試驗分析 .................. 105
4-4-4 飛灰酸萃取後序列萃取分析結果 ...................... 109
4-4-5 飛灰酸萃取後重金屬之風險評估指數 ............... 134
第五章 結論與建議................ 137
5-1 結論....................................... 137
5-2 建議...................................... 139
參考文獻......................................... 141
參考文獻 Alorro, R. D., Hiroyoshi, N., Ito, M., Tsunekawa, M., 2009. Recovery of heavy metals from MSW molten fly ash by CIP method. Hydrometallurgy, 97, 8-14.
Anastasiadou, K., Christopoulos, K., Mousios, E., Gidarakos, E., 2012. Solidification/stabilization of fly and bottom ash from medical waste incineration facility. Journal of hazardous materials, 207, 165-170.
Assi, A., Bilo, F., Zanoletti, A., Ponti, J., Valsesia, A., Spina, R. L., Zacco, A., Bontempi, E., 2020. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. Journal of Cleaner
Production, 245(1), 118779.
Benassi, L., Pasquali, M., Zanoletti, A., Dalipi, R., Borgese, L., Depero, L. E., &
Bontempi, E., 2016. Chemical Stabilization of Municipal Solid Waste
Incineration Fly Ash without Any Commercial Chemicals: First Pilot- Plant
Scaling Up. ACS Sustainable Chemistry & Engineering, 4(10), 5561-5569.
Cao, Y. N., Luo, J. J., Sun, S. Q., 2021. Characteristics of MSWI fly ash with
acid leaching treatment. Journal of Fuel Chemistry and Technology. 49(8),
1208-1218.
Cappai, G., Cara, S., Muntoni, A., & Piredda, M., 2012. Application of
accelerated carbonation on MSW combustion APC residues for metal
immobilization and CO2 sequestration. Journal of hazardous materials, 207,
159-164.
Chen, C.G., Sun, C.J. Gau, S.H., Wu, C.W., Chen, Y.L., 2013. The effects of
the mechanical–chemical stabilization process for municipal solid waste
incinerator fly ash on the chemical reactions in cement paste. Waste
Manage. 33, 858-865.
Chen, W. S., Chang, F. C., Shen, Y. H., Tsai, M. S. & Ko, C. H., 2012. Removal
of chloride from MSWI fly ash. Journal of hazardous materials, 237, 116-
120.
Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., Yang, S. F., 2012. The heavy
142
metal adsorption characteristics on metakaolin-based geopolymer. Applied
Clay Science, (56), 90-96.
Chiang, K.Y., Hu, Y.H., 2010. Water washing effects on metals emission
reduction during municipal solid waste incinerator (MSWI) fly ash
melting process. Waste Manage, 30, 831-838.
Chiang, K.Y., Jih, J. Y., Chien, M. D., 2008. The acid extraction of metals from
municipal solid waste incinerator products. Hydrometallurgy, 93, 16-22.
Chuang, K. H., Lu, C. H., Chen, J. C., Wey, M. Y., 2018. Reuse of bottom ash
and fly ash from mechanical-bed and fluidized-bed municipal incinerators
in manufacturing lightweight aggregates. Ceramics International, 44(11),
12691-12696.
Deike, R., Ebert, D., Schubert, D., Ulum, R.M., Warnecke, R., Vogell, M., 2014.
Recycling of metals from bottom ash. How an economical and sustainable
urban mining can possibly be realized. Mull Abfall, 46, 4-12.
Dontriros, S., Likitlersuang, S., Janjaroen, D., 2020. echanisms of chloride and
sulfate removal from municipal-solid-waste-incineration fly ash (MSWI
FA): Effect of acid-base solutions. Waste Management, 101, 44-53.
Fellner, J., Lederer, J., Purgar, A., Winterstetter, A., Rechberger, H., Winter, F.,
Laner, D., 2015. Evaluation of resource recovery from waste incineration
residues – The case of zinc. Waste Management, 37, 95-103.
Gabarrón, M., Zornoza, R., Martínez, S. M., Muñoz, V. A., Faz, A., & Acosta, J.
A., 2019. Effect of land use and soil properties in the feasibility of two
sequential extraction procedures for metals fractionation. Chemosphere,
218, 266-272.
Grée, G., Florea, M., Keulen, K., Brouwers, A., 2016. Contaminated biomass fly
ashes–Characterization and treatment optimization for reuse as building
materials. Waste management, 49, 96-109.
Hu, Y., Zhang, P., Li, J., Chen, D., 2015. Stabilization and separation of heavy
metals in incineration fly ash during the hydrothermal treatment process.
Journal of Hazardous Materials, 299(15), 149-157.
Hu, S. H., 2005. Stabilization of heavy metals in municipal solid waste
143
incineration ash using mixed ferrous/ferric sulfate solution. Journal of
Hazardous Materials, 123(1-3), 158-164.
Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C., Lee, M. Y., Wang, C. F.,
2007. Sequential extraction for evaluating the leaching behavior of selected
elements in municipal solid waste incineration fly ash. Journal of Hazardous
Materials, 149, 180-188.
Huang, B., Gan, M., Ji, Z., Fan, X., Zhang, D., Chen, X., Sun, Z., Huang, X.,
Fan, Y., 2022. Recent progress on the thermal treatment and resource
utilization technologies of municipal waste incineration fly ash: A review.
Process Safety and Environmental Protection, 159, 547-565.
Huber, F., Herzel, H., Adam, C., Mallow O., Blasenbauer, D., Fellner, J., 2018.
Combined disc pelletisation and thermal treatment of MSWI fly ash. Waste
Management, 73, 381-391.
Huber, F., Fellner, J., 2018. Integration of life cycle assessment with monetary
valuation for resource classification: The case of municipal solid waste
incineration fly ash. Resources, Conservation and Recycling, 139, 17-26.
Huber, F., Blasenbauer, D., Mallow O., Lederer, J., Winter, F., & Fellmer, J. 2016.
Thermal co-treatment of combustible hazardous waste and waste
incineration fly ash in a rotary kiln. Waste Management, 73, 381-391.
Jang, K., Choi, W. Y., Lee, D., Park J., Yoo, Y., 2022. Purification of landfill gas
by extracted calcium ions from municipal solid waste incineration fly ash.
Science of The Total Environment, 807(2), 150729.
Jiang, Y., Xi, B., Li, X., Ling, Z., Wei, Z., 2009. Effect of water-extraction on
water characteristics of melting and solidification of fly ash from municipal
solid waste incinerator. J. Hazard. Mater, 161, 871-877.
Jiang, J.G., Chang, Z., Chen, M.Z., Yan, Z., 2009. Assessing the chemical
behavior of metals in municipal solid waste incineration fly ash using an
enhanced CO2 absorption. Environ. Eng. Sci, 26, 1615–1621.
Jiang, J., Maozhe, C., Yan, Z., & Xin, X., 2009. Pb stabilization in fresh fly ash
from municipal solid waste incinerator using accelerated carbonation
technology. Journal of hazardous materials, 162(2), 1046-1051.
144
Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, B.M., 2010, Removal
of hazardous metals from MSW fly ash—An evaluation of ash leaching
methods, 173(1-3), 310-317.
Karlfeldt Fedje, K., Strömvall, A. M., 2019. Enhanced soil washing with copper
recovery using chemical precipitation. Journal of Environmental Management,
236(15), 68-74.
Kirkelund, G. M., Magro, C., Guedes, P., Jensen, P. E., Ribeiro, A. B., Ottosen,
L. M., 2015. Electrodialytic removal of heavy metals and chloride from
municipal solid waste incineration fly ash and air pollution control residue
in suspension – test of a new two compartment experimental cell.
Electrochimica Acta, 181(1), 73-81.
Ko, M. S., Chen, Y. L., Wei, P. S., 2013. Recycling of municipal solid waste
incinerator fly ash by using hydrocyclone separation. Waste Management,
33, 615-620.
Lam, H. K., Ip, W. M., Barford, P., McKay, G., 2010. Use of incineration MSW
ash: a review. Sustainability, 2(7), 1943–1968.
Lam, C. H. K., Barford, J., Mckay, G., 2011. Utilization of municipal solid waste
incineration ash in Portland cement clinker. Clean Technologies and
Environmental Policy, 13(4), 607-615.
Leermakers, M., Mbachou, B. E., Husson, A., Lagneau, V., Descostes, M., 2019.
An alternative sequential extraction scheme for the determination of trace
elements in ferrihydrite rich sediments. Talanta, 199, 80-88.
Lederer, J., Trinkel, V., Fellner, J., 2016. Wide-scale utilization of MSWI fly
ashes in cement production and its impact on average heavy metal contents
in cements: The case of Austria. Waste Management, 60, 247-258.
Li, J., Tang, B., Liu, R., Xu, Z., Xu, P., Zhou, Q., Wen, Y., Zhong, C., 2022.
Characteristics of MSWI fly ash and its resource transformation by road
engineering: Mechanical and environmental considerations. Construction and
Building Materials, 323(14), 126575.
Li, L.Y., Ohtsubo, M., Higashi, T., Yamaoka, S., Morishita, T., 2007.
Leachability of municipal solid waste ashes in simulated landfill conditions.
145
Waste Manage, 27 (7), 932–945.
Liang, S., Chen, J., Guo, M., Feng, D., Liu, L., Qi, T., 2020. Utilization of
pretreated municipal solid waste incineration fly ash for cement-stabilized soil.
Waste Management, 105, 425-432.
Lindberg, D., Molin, C., Hupa, M., 2015. Thermal treatment of solid residues
from WtE units: A review. Waste Management, 37, 82-94.
Ma, Z., Zhang, S., Zhang, H., Cheng, F., 2019. Novel extraction of valuable
metals from circulating fluidized bed-derived high-alumina fly ash by acidalkali-based alternate method. Journal of Cleaner Production, 230, 302-313.
Ma, W., Fang, Y., Chen, D., Chen, G., Xu, Y., Sheng, H., Zhou, Z., 2017.
Volatilization and leaching behavior of heavy metals in MSW incineration
fly ash in a DC arc plasma furnace. Fuel, 210(15), 145-153.
Peng, Z., Weber, R., Ren, Y., Wang, J., Sun, Y., Wang, L., 2020. Characterization
of PCDD/Fs and heavy metal distribution from municipal solid waste
incinerator fly ash sintering process. Waste Management, 103(15), 260-267.
Qian, G.G., Zhang, H.H., Zhang, X.L., Chui, P.C., 2005, Modification of MSW
fly ash by anionic chelating surfactant. Journal of Hazardous Materials, 121,
251–258.
Qiu, Q.L., Jiang, X.G., Lu, S.Y., Ni, M.J., 2016. Effects of Microwave-Assisted
hydrothermal treatment on the major heavy metals of Municipal Solid
Waste Incineration Fly Ash in a circulating fluidized bed. Energy Fuels,
30(7), 5945-5952.
Quina, M.J., Bordado, J.C., Quinta-Ferreira, R.M., 2008. Treatment and use of
air pollution control residues from MSW incineration: An overview. Waste
Management, 28(11), 2097-2121.
Samaras, P., Karagiannidis, A., Kalogirou, E., Themelis, N., Kontrogianni, St.,
and Perkoulidis, G., 2010. A Systemic approach on characteristics and
treatment processes for hazardous wastes: the case of fly-ash from waste-toenergy facilities for municipal solid wastes. The 18th International Seminar
on Interaction of Neutrons with Nuclei, Dubna, Russia, 26–29.
Scharff, H., 2009. Bottom ash and fly ash disposal, Workshop Implementation
146
of the Landfill Directive, Tallinn, Estonia, May 15.
Schlumberger, S., Schuster, M., Ringmann, S., Koralewska, R., 2007. Recovery
of high purity zinc from filter ash produced during the thermal treatment of
waste and inerting of residual materials. Waste Management, 25(6), 547-
550.
Shi, H.S., Kan, L.L., 2009. Characteristics of municipal solid wastes incineration
(MSWI) fly ash–cement matrices and effect of mineral admixtures on
composite system. Construction and Building Materials, 23(6), 2160-2166.
Sicong, T., Jiang, J., & Chang, Z., 2011. Influence of flue gas SO2 on the toxicity
of heavy metals in municipal solid waste incinerator fly ash after
accelerated carbonation stabilization. Journal of hazardous materials,
192(3), 1609-1615.
Soliman, N. F., El Zokm, G. M., & Okbah, M. A., 2018. Risk assessment and
chemical fractionation of selected elements in surface sediments from Lake
Qarun, Egypt using modified BCR technique. Chemosphere, 191, 262-271.
Sobiecka, E., Szymanski, L., 2014. Thermal plasma vitrification process as an
effective technology for fly ash and chromium-rich sewage sludge
utilization. Journal of Chemical Technology and Biotechnology, 89(7),
1115-1117.
Sukandar, Padmi, T., Tanaka, M., Aoyama, I., 2009. Chemical stabilization of
medical waste fly ash using chelating agent and phosphates: Heavy metals
and ecotoxicity evaluation. Waste Management, 29, 2065-2070.
Tang, J. F., Petranikova, M., Ekberg, C., Steenari, B. M., 2017. Mixer-settler
system for the recovery of copper and zinc from MSWI fly ash leachates:
An evaluation of a hydrometallurgical process. Journal of Cleaner
Production, 148, 595-605.
Tang, J., Steenari, B.M., 2015. Solvent extraction separation of copper and zinc
from MSWI fly ash leachates. Waste Management, 44, 147-154.
Tang, J.F., Steenari, B.M., 2015. Leaching optimization of municipal solid waste
incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.
Waste Management, 48, 315-322.
147
Tang, M., Zhou, C., Pan, J., Zhang, N., Liu, C., Cao, S., Hu, T., Ji, W., 2019.
Study on extraction of rare earth elements from coal fly ash through alkali
fusion – Acid leaching. Minerals Engineering, 136(1), 36-42.
Teixeira, E. R., Mateus, R., Camões, A. F., Bragança, L., Branco, F. G., 2016.
Comparative environmental life-cycle analysis of concretes using biomass
and coal fly ashes as partial cement replacement material. Journal of
Cleaner Production, 112(4), 2221-2230.
Tian, S., & Jiang J., 2012. Sequestion of Flue Gas CO2 by Direct Gas-Solid
Carbonation of Air Pollution Control System Residues. Environmental
science & technology, 46(24), 13545-13551.
Tong, L., He, J., Wang, F., Wang, Y., Wang, L., Tsang, D. C. W., Hu, Q., Hu, B.,
Tang, Y., 2020. Evaluation of the BCR sequential extraction scheme for
trace metal fractionation of alkaline municipal solid waste incineration fly
ash. Chemosphere, 249, 126115.
Toro, M. A. D., Calmano, W., Ecke, H., 2009. Wet extraction of heavy metals
and chloride from MSWI and straw combustion fly ashes. Waste
Management, 29, 2494-2499.
Tosti, L., Zomeren, A. V., Pels, J. R., Damgaard, A., Comans, R. N. J., 2020. Life
cycle assessment of the reuse of fly ash from biomass combustion as
secondary cementitious material in cement products. Journal of Cleaner
Production, 245(1), 118937.
Trang, N. T. M., Ho, N. A. D., Babel, S., 2021. Reuse of waste sludge from water
treatment plants and fly ash for manufacturing of adobe bricks.
Chemosphere, 284, 131367.
Tripathy, A. K., Behera, B., Aishvarya, V., Sheik, A. R., Dash, B., Sarangi, C. K.,
Tripathy, B. C., Sanjay, K., Bhattacharya, I. N., 2019. Sodium fluoride
assisted acid leaching of coal fly ash for the extraction of alumina. Minerals
Engineering, 131, 140-145.
Vavva, C., Voutsas, E., Samaras, P., Tassios, D., 2009. Environmental
management of APC residues produced from the incineration of municipal
waste with energy recovery, CEMEPE 09 & SECOTOX Conference,
148
Mykonos, Greece, June 21–26.
Vareda, J. P., Valente, A. J. M., Duraes, L., 2019. Assessment of heavy metal
pollution from anthropogenic activities and remediation strategies: A review.
Journal of Environmental Management, 246, 101-118.
Wang, K.S., Chiang, K.Y., Lin, K.L., Sun, C.J., 2001, Effects of a waterextraction process on heavy metal behavior in municipal solid waste
incinerator fly ash. Hydrometallurgy, 62, 73–81.
Wang, X., Ji, G., Zhu, K., Li, C., Zhang, Y., Li, A., 2021. Integrated thermal
behavior and compounds transition mechanism of municipal solid waste
incineration fly ash during thermal treatment process. Chemosphere, 264(1),
128406.
Wang, F. H., Zhang, F., Chen, Y. J., Gao, J., Zhao, B., 2015. A comparative study
on the heavy metal solidification/stabilization performance of four chemical
solidifying agents in municipal solid waste incineration fly ash. Journal of
Hazardous Materials, 300, 451-458.
Weibel, G., Eggenberger, U., Schlumberger, S., Mäder, U.K., 2017. Chemical
associations and mobilization of heavy metals in fly ash from municipal
solid waste incineration. Waste Management, 62, 147-159.
Weibel, G., Eggenberger, U., Kulik, D.A., Hummel, W., Schlumberger, S., Kulik,
W., Fisch, F., Mäder, U.K., 2018. Extraction of heavy metals from MSWI
fly ash using hydrochloric acid and sodium chloride solution. Waste
Management, 76, 457-471.
Xue, Y., Liu, X., 2021. Detoxification, solidification and recycling of municipal
solid waste incineration fly ash: A review. Chemical Engineering Journal,
420(3), 130349.
Yang, Z.Z., Ji, R., Liu, L.L., Wang, X.D., Zang, Z.T., 2018. Recycling of
municipal solid waste incineration by-product for cement composites
preparation. Construction and Building Materials, 162, 794-801.
Yang, R., Liao, W. P., Lin, C. Y., 2013. Feasibility of lead and copper recovery
from MSWI fly ash by combining acid leaching and electrodeposition
treatment. Remediation Treatment, 32, 1074-1081.
149
Yang, Z. Z., Tian, S., Ji, R., Liu, L., Wang, X., Zhang, Z., 2017. Effect of waterwashing on the co-removal of chlorine and heavy metals in air pollution
control residue from MSW incineration. Waste Management, 68, 221-231.
Yakubu, Y., Zhou, J., Ping, D., Shu, Z., Chen, Y., 2018. Effects of pH dynamics
on solidification/stabilization of municipal solid waste incineration fly ash.
Journal of Environmental Management, 207, 243-248.
Yin, K., Ahamed, A., Lisak, G., 2018. Environmental perspectives of recycling
various combustion ashes in cement production – A review. Waste
Management, 78, 401-416.
Zhao, C., Lin, S., Zhao, Y., Lin., K., Tian, L., Xie, M., Zhou, T., 2022.
Comprehensive understanding the transition behaviors and mechanisms of
chlorine and metal ions in municipal solid waste incineration fly ash during
thermal treatment. Science of The Total Environment, 807(2), 150731.
Zhao, Y. J., Sun, Y. J., Fan, X. X., Li, W.H., Wang, H.W., Wu, G.Z., 2018.
Leaching characteristics of heavy metals by landfill leachate from
stabilized MSWI fly ash. China Environ. Sci, 38 (4), 1411–1416.
Zhao, H. L., Liu, F., Liu, H. Q., Wang, L., Zhang, R., Hao, Y., 2020. Comparative
life cycle assessment of two ceramsite production technologies for reusing
municipal solid waste incinerator fly ash in China. Waste Management, 113,
447-455.
Zhang, Y., Cetin, B., Likos, W. J., Edil, T. B., 2016. Impacts of pH on leaching
potential of elements from MSW incineration fly ash. Fuel. 184(15), 815-
825.
Zhang, F. S., Itoh, H., 2006. Extraction of metals from municipal solid waste
incinerator fly ash by hydrothermal process. Journal of Hazardous Materials,
136, 663-670.
Zhang, H. Y., Ma, G. X., 2012. Leaching of Heavy Metals from Municipal Solid
Waste Incineration (MSWI) Fly Ash Using Sulfuric Acid. Applied
Mechanics and Materials, (249-250), 922-926.
Zhang, H. Y., Ma, G. X., 2012. Leaching of Heavy Metals from Municipal Solid
Waste Incineration (MSWI) Fly Ash Using Nitric Acid. Applied Mechanics
150
and Materials, (249-250), 918-921.
Zhu, F., Takaoka, M., Oshita, K., Takeda, Z., 2009. Comparison of two types of
municipal solid waste incinerator fly ashes with different alkaline reagents
in washing experiments. Waste Management, 29(1),259-264.
Zhu, F., Takaoka, M., Oshita, K., Morisawa, S., 2011. The Calcination Process
in a System for Washing, Calcinating, and Converting Treated Municipal
Solid Waste Incinerator Fly Ash into Raw Material for the Cement Industry.
Journal of the Air & Waste Management Association, 61(7), 740-746.
江康鈺、王啟宗,2008,都市垃圾焚化飛灰與淨水污泥共同燒結產物之動
力及材料特性研究,第二十屆廢棄物處理技術研討會中華民國環境工
程學會,台北市,WAS0970039-3。
江康鈺、黃淑貞,2008,都市垃圾焚化飛灰熔渣製成玻璃陶瓷之材料特性
及其反應動力之研究,第二十屆廢棄物處理技術研討會中華民國環境
工程學會,台北市。
行政院環境保護署,2021,焚化廠營運管理資訊系統。
何智明,2006,垃圾焚化廠飛灰、底渣再利用之績效評估指標構建之研究
-以新竹巿垃圾焚化廠為例,碩士論文,中華大學科技管理研究所。
李善源、陳盈良、謝尚谷、王俊瑋、張祖恩,2021,水洗焚化飛灰再利用
於輕質混凝土之研究,第三十三屆廢棄物處理技術研討會中華民國環
境工程學會,台中市,WAS1100078-3。
邱孔濱、張坤森、黃琦雯、黃子寧、連郁潔、林沛妤,2021,MSWI 飛灰
無害化與再利用模型廠之精進節水研究,第三十三屆廢棄物處理技術
研討會中華民國環境工程學會,台中市,WAS1100096-3。
林凱裕、黃菀婷、林子洂、曾思萍、賴淳仁、郭益銘,2014,以回收廢硫
酸之概念技術降低焚化飛灰中有害物質研究,第二十六屆廢棄物處理
技術研討會中華民國環境工程學會,台中市,WAS1030062-3。
林以潔、陳志成、江金龍,2015,不同操作條件對焚化飛灰合成沸石之影
響,第二十七屆廢棄物處理技術研討會中華民國環境工程學會,桃園
151
市,WAS1040035-3。
柯宏諺、林以潔、陳志成,2021,應用電化學技術進行焚化飛灰除氯及無
害化之研究,第三十三屆廢棄物處理技術研討會中華民國環境工程學
會,台中市,WAS1100051-3。
高佳君、江康鈺,2020,應用無機聚合物技術穩定受重金屬污染底泥之可
行性研究,第三十二屆廢棄物處理技術研討會中華民國環境工程學會,
桃園市。
許育婷、林以潔、陳志成,2021,焚化底渣再利用合成環保吸附材料對重
金屬之吸附效能與特性模擬研究,第三十三屆廢棄物處理技術研討會
中華民國環境工程學會,台中市,WAS1100093-3。
張坤森、邱孔濱、羅文鴻、林昇彥、王琳瑋、徐誠隆,我國垃圾焚化飛灰
再利用之困境及去化市場分析研究,2015,第二十七屆廢棄物處理技
術研討會,中華民國環境工程協會,桃園市,WAS1040057-4。
張坤森、邱孔濱、陳麗萍、潘志明、鍾日熙,2012,垃圾焚化飛灰特性、
處理再利用技術、法規與未來展望,環境工程會刊第 23 卷第 2 期。
張坤森、邱孔濱、陳麗萍、王麒維、黃彥鈞、李鴻璋、鍾政宏、陳麗萍、
鍾政宏、李鴻璋、柯韋丞、楊斾蓉,2011,萃取動力學結合晶相轉化
開發焚化飛灰無害化技術及無害化後之資材化研究,2011,行政院國
家科學委員會專題研究計畫。
張坤森、蘇薏茹、邱孔濱、徐誠隆、楊之葶,2016,利於垃圾焚化飛灰再
利用之精進無害化處理研究,第二十八屆廢棄物處理技術研討會中華
民國環境工程學會,台南市,WAS1050060-3。
張坤森、劉真驛、戴宛柔、吳慧敏、王琳瑋、徐偉軒,2014,階段性技術
處理垃圾焚化飛灰作為可回收材料之可行性,第二十六屆廢棄物處理
技術研討會中華民國環境工程學會,台中市,WAS1030047-3。
張坤森、陳麗萍、黃晨豪、王麒維、蔡佩欣、鍾慧穎,2011,多元處理技
術去除垃圾焚化飛灰氯含量之分析研究,第二十三屆廢棄物處理技術
152
研討會中華民國環境工程學會,台南市,WAS1000091-3。
張坤森、胡智豪、吳宗勳、徐誠隆、楊之葶、洪資喻,2017,無害化 MSWI
飛灰強化資源化混凝土之可行性研究,第二十九屆廢棄物處理技術研
討會中華民國環境工程學會,台北市,WAS1060046-3。
張坤森、邱孔濱、黃孝綸、黃琦雯、黃清珊、張晴晴,2021,開發有害事
業廢棄物焚化飛灰轉化為有價玻璃之研究,第三十三屆廢棄物處理技
術研討會中華民國環境工程學會,台中市,WAS1100072-3。
郭益銘、劉雅婷、陳美如、周宜成、黃菀婷,2010,從電鍍鍍鋅污泥中回
收鋅與鐵之可行性探討,工程科技與教育學刊,第七卷,第五期,
856~861 頁。
徐誠隆、張坤森、邱孔濱、許舜傑、余家君、林柏勝,2020,以垃圾焚化
飛灰燒製高值化微晶玻璃之研究,第三十二屆廢棄物處理技術研討會
中華民國環境工程學會,桃園市,WAS1090071-3。
曹家麒、趙怡鈞、吳重霖、段宇君、黃國林、郭益銘,2015,焚化飛灰新
概念處理流程之研究,第二十七屆廢棄物處理技術研討會中華民國環
境工程學會,桃園市,WAS1040107-3。
趙怡鈞、林凱裕、賴淳仁、郭益銘,2013,以回收廢酸之創新概念技術分
離處理再利用焚化飛灰之研究,第二十五屆廢棄物處理技術研討會中
華民國環境工程學會,台南市,WAS1020092-1。
廖文彬、楊仁泊、郭韋廷、黃瑞淵,2013,垃圾焚化飛灰重金屬無害化處
理技術之研發,第二十五屆廢棄物處理技術研討會中華民國環境工程
學會,台南市,WAS1020037-3。
劉厚伯、張祖恩、陳盈良、戴育陞,2019,焚化飛灰資源化產製鈣矽水合
材料之研究,第三十一屆廢棄物處理技術研討會中華民國環境工程學
會,台中市。
蔡筑廷、陳昀萱、許育婷、林以潔、陳志成,2021,焚化底渣水熱合成沸
石及其吸附特性研究,第三十三屆廢棄物處理技術研討會中華民國環
153
境工程學會,台中市,WAS1100034-3。
蕭毓撰、江康鈺、張木彬、林雅停、呂承翰、郭俊鑫,2018,加速碳酸鹽
反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究,第三十屆
廢棄物處理技術研討會中華民國環境工程學會,台南市,WAS1070010-
3。
指導教授 江 康 鈺(Kung-Yuh Chiang) 審核日期 2022-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明