博碩士論文 109326003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.137.216.240
姓名 蔡明志(Min-Chih Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用催化裂解技術評估熱塑型塑膠轉換能源之可行性研究
(Evaluation on the feasibility of converting thermoplastics into energy by catalytic pyrolysis)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-5-20以後開放)
摘要(中) 本研究利用直立式固定床反應爐,探討丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene, ABS)及聚甲基丙烯酸甲酯(Poly methyl methacrylate, PMMA)兩種熱塑型塑膠,催化熱裂解轉換為能源之可行性,其中試驗條件包括熱裂解溫度650°C、1:1摻混比例及添加5–15 wt.%之自製鐵鎳基催化劑等條件。研究結果顯示,ABS熱裂解產物以氣體為主,產量為55 wt.%,其次為38 wt.%之裂解油,此外,添加10 wt.%催化劑之條件下,裂解反應有最大之氣體產物產生。PMMA因其化合物特性,導致裂解產物主要以氣體為主,產量為85 wt.%,然當添加10 wt.%催化劑之條件時,裂解油之產量約增加至13 wt.%。摻混1:1之ABS與PMMA條件時,裂解油產量由未添加催化劑之17.14 wt.%,增加至添加15 wt.%催化劑之24.0 wt.%。

裂解油產物主要分為輕質油及重質油,主要均以碳、氫、氧及氮元素所組成,其中ABS裂解油之熱值,則介於3,354 kcal/kg至4,548 kcal/kg之間,且裂解油所含之水分含量約介於0.11%至4.98%。另根據裂解油之黏滯度分析結果顯示,輕質油之黏滯度約為4.52 cP至12.90 cP,均較重質油之16.47 cP–124.97 cP為低,主要原因係與裂解油之化合物種有關。至於1:1摻混之條件下,裂解油之熱值介於3,354 kcal/kg至4,382 kcal/kg之間,與ABS及PMMA個別裂解反應產生裂解油之熱值,極為相似。

根據ABS衍生輕質油之化合物物種分析結果顯示,化合物含碳數目主要集中在C7-C9,且以芳香族化合物為主,並且隨著催化劑的添加,其含碳數目化合物之分布,呈現上升趨勢。此外,ABS衍生重質油之化合物物種,則以C10-C16為主,且均以芳香族化合物種類居多。至於 PMMA 衍生之裂解油,主要以PMMA單體(甲基丙烯酸甲酯,MMA)之含氧化合物,大約占90%,後續若能進一步提煉分離,將可做為再合成聚合物之單體化合物。整體而言,本研究已成功驗證ABS及PMMA共同催化裂解之可行性,同時依據相關衍生裂解油之物種鑑定分析結果,相關成果應有助後續相關裂解技術之選擇,以及工程應用之參考依據。
摘要(英) This research investigated the feasibility of converting two types of thermoplastics, including Acrylonitrile Butadiene Styrene (ABS) and Polymethyl methacrylate (PMMA), into energy using a vertical fixed bed reactor. The pyrolysis conditions included the pyrolysis temperature of 650°C, blending ratio (1:1), and 5-15 wt.% self-made iron-nickel-based catalyst addition. The experimental results show that the pyrolytic gaseous products are dominant and yield is approximately 55 wt.%. The pyrolytic oil yield is approximately 38 wt.%. In the case of adding 10 wt.% catalysts, the pyrolytic gaseous product presents the maximum gas product yield. However, due to the PMMA characteristics, the pyrolytic product derived from PMMA is mainly gas corresponding to 85 wt.% yields. On the other hand, the pyrolytic oil yields 13 wt.% with the catalyst addition increasing to 10 wt.%. In the case of 1:1 ABS:PMMA blending, the pyrolytic oil yield increased from 17.14 wt.% to 24.0 wt.% with the catalyst addition increasing from 0% to 15 wt.%.

The pyrolytic oils include light and heavy fraction oil containing carbon, hydrogen, oxygen, and nitrogen. The heating value of the pyrolytic oil derived from ABS is ranged between 3,354 kcal/kg and 4,548 kcal/kg. Meanwhile, the moisture content of pyrolytic oil is approximately 0.11%–4.98%. Based on the analysis results of pyrolytic oil viscosity, the light fraction oil viscosity (4.52 cP–12.90 cP) is lower than that of heavy fraction oil (16.47 cP–124.97 cP). It implied that the viscosity is related to the speciation of pyrolytic oil. On the other hand, in the pyrolytic oil derived from 1:1 ABS: PMMA blending, the heating value is ranged between 3,354 kcal/kg and 4,382 kcal/kg. It is similar to the pyrolytic oil derived from ABS and/or PMMA.

According to the speciation of light fraction oil derived from ABS, the carbon number of light fraction oil compounds dominates in C7-C9. Meanwhile, aromatic compounds are the main speciation. The carbon number of compounds partitioning is increasing with the catalyst addition increasing. In addition, the heavy fraction oil derived from ABS is mainly C10-C16. The aromatic compounds are also the main speciation. However, the PMMA monomer (methyl methacrylate, MMA) derived from PMMA is approximately 90%. It implied that the MMA monomer compound could resynthesized the new polymer during further refining and purifying. In summary, this study has successfully verified the feasibility of catalytic pyrolysis of ABS and PMMA. Meanwhile, based on the speciation identification of pyrolytic oils, the relevant results should be helpful for the subsequent selection of pyrolysis technologies and references for engineering applications.
關鍵字(中) ★ 丙烯腈-丁二烯-苯乙烯共聚物
★ 聚甲基丙烯酸甲酯
★ 熱裂解
★ 催化劑
★ 催化熱裂解
關鍵字(英) ★ Acrylonitrile Butadiene Styrene (ABS)
★ Poly methyl methacrylate (PMMA)
★ pyrolysis
★ catalyst
★ catalytic pyrolysis
論文目次 摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VII
圖目錄 IX
表目錄 XIII
第一章 前言 1
第二章 文獻回顧 5
2-1 塑膠使用現況及處理技術 5
2-2 泛用熱塑型塑膠 9
2-3 塑膠熱裂解技術 12
2-3-1 影響塑膠熱裂解產物之因素 17
第三章 研究材料與方法 29
3-1 試驗材料 29
3-1-1 塑膠原料 29
3-1-2 鐵鎳基催化劑 30
3-2 試驗方法 32
3-2-1 試驗設備與操作條件 32
3-2-2 熱裂解試驗操作步驟 33
3-3 分析項目與方法 34
3-3-1 塑膠原料 34
3-3-2 熱裂解動力學分析 37
3-3-3 熱裂解產物 41
第四章 結果與討論 51
4-1 ABS及PMMA原料基本特性分析 51
4-2 塑膠原料熱裂解動力學分析 52
4-2-1 重量損失分析 53
4-2-2 協同效應分析 60
4-2-3 反應特性及活化能分析 62
4-2-4 熱裂解氣體產物官能基分析 72
4-3 熱裂解產物產量分析 78
4-3-1 產物之質量平衡 78
4-4 熱裂解產物特性分析 91
4-4-1 液體產物特性分析 91
4-4-2 固體產物特性分析 116
4-4-3 氣體產物特性分析 117
4-5 產能效率評估 132
第五章 結論與建議 143
5-1 結論 143
5-2 建議 146
參考文獻 149
附 錄 163
參考文獻 Abomohra, A.E.F., Sheikh, H.M.A., El-Naggar, A.H., Wang, Q., 2021. Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization. Renewable and Sustainable Energy Reviews 149, 111335.
Aisien, E.T., Otuya, I.C., Aisien, F.A., 2021. Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst. Environmental Technology & Innovation 22, 101455.
Al-Salem, S.M., 2019. Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection 127, 171-179.
Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J., Olazar, M., 2012. Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal 207-208, 27-34.
Cai, N., Li, X., Xia, S., Sun, L., Hu, J., Bartocci, P., Fantozzi, F., Williams, P.T., Yang, H., Chen, H., 2021. Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: High-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. Energy Conversion and Management 229.
Charusiri, W., Phowan, N., Vitidsant, T., 2022. Pyrolysis of lignocellulosic biomass with high-density polyethylene to produce chemicals and bio-oil with high liquid yields. Sustainable Chemistry and Pharmacy 25, 100567.
Chen, C., Zhao, J., Fan, D., Qi, Q., Zeng, T., Bi, Y., 2022. Microwave-assisted co-pyrolysis of chlorella vulgaris and polypropylene: Characteristic and product distribution analyses. Bioresource Technology 344, 126279.
Chen, R., Xu, M., 2020. Kinetic and volatile products study of micron-sized PMMA waste pyrolysis using thermogravimetry and Fourier transform infrared analysis. Waste Management 113, 51-61.
Choi, I.H., Lee, H.J., Rhim, G.B., Chun, D.H., Lee, K.H., Hwang, K.R., 2022. Catalytic hydrocracking of heavy wax from pyrolysis of plastic wastes using Pd/Hβ for naphtha-ranged hydrocarbon production. Journal of Analytical and Applied Pyrolysis 161, 105424.
Coats, A.W., Redfern, J.P., 1964. Kinetic Parameters from Thermogravimetric Data. Nature 201, 68-69.
Cui, Y., Li, Y., Wang, W., Wang, X., Lin, J., Mai, X., Song, G., Naik, N., Guo, Z., 2021. Flotation separation of acrylonitrile-butadienestyrene (ABS) and high impact polystyrene (HIPS) from waste electrical and electronic equipment (WEEE) by potassium permanganate surface modification. Separation and Purification Technology 269, 118767.
Dhahak, A., Grimmer, C., Neumann, A., Rüger, C., Sklorz, M., Streibel, T., Zimmermann, R., Mauviel, G., Burkle-Vitzthum, V., 2020. Real time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques. Waste Management 106, 226-239.
Ding, Y., Zhang, W., Zhang, X., Han, D., Liu, W., Jia, J., 2022. Pyrolysis and combustion behavior study of PMMA waste from micro-scale to bench-scale experiments. Fuel 319, 123717.
Du, A.K., Zhou, Q., van Kasteren, J.M.N., Wang, Y.Z., 2011. Fuel oil from ABS using a tandem PEG-enhanced denitrogenation–pyrolysis method: Thermal degradation of denitrogenated ABS. Journal of Analytical and Applied Pyrolysis 92, 267-272.
Dyer, A.C., Nahil, M.A., Williams, P.T., 2021. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil. Journal of the Energy Institute 97, 27-36.
Engamba Esso, S.B., Xiong, Z., Chaiwat, W., Kamara, M.F., Longfei, X., Xu, J., Ebako, J., Jiang, L., Su, S., Hu, S., Wang, Y., Xiang, J., 2022. Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism. Biomass and Bioenergy 159, 106415.
Eschenbacher, A., Varghese, R.J., Weng, J., Van Geem, K.M., 2021. Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling. Journal of Analytical and Applied Pyrolysis 160, 105374.
Esposito, L., Cafiero, L., De Angelis, D., Tuffi, R., Vecchio Ciprioti, S., 2020. Valorization of the plastic residue from a WEEE treatment plant by pyrolysis. Waste Management 112, 1-10.
Fan, Y., Lu, D., Wang, J., Kawamoto, H., 2022. Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design. Energy 239, 122234.
Geyer, R., Jambeck Jenna, R., Law Kara, L., 2017. Production, use, and fate of all plastics ever made. Science Advances 3, e1700782.
Hong, D., Gao, P., Wang, C., 2022. A comprehensive understanding of the synergistic effect during co-pyrolysis of polyvinyl chloride (PVC) and coal. Energy 239, 122258.
Huo, E., Lei, H., Liu, C., Zhang, Y., Xin, L., Zhao, Y., Qian, M., Zhang, Q., Lin, X., Wang, C., Mateo, W., Villota, E.M., Ruan, R., 2020. Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO. Sci Total Environ 727, 138411.
Inayat, A., Rocha-Meneses, L., Ghenai, C., Abdallah, M., Shanableh, A., Al-Ali, K., Alghfeli, A., Alsuwaidi, R., 2022. Co-pyrolysis for bio-oil production via fixed bed reactor using date seeds and plastic waste as biomass. Case Studies in Thermal Engineering 31, 101841.
Jiang, C., Wang, Y., Luong, T., Robinson, B., Liu, W., Hu, J., 2022. Low temperature upcycling of polyethylene to gasoline range chemicals: Hydrogen transfer and heat compensation to endothermic pyrolysis reaction over zeolites. Journal of Environmental Chemical Engineering 10, 107492.
Jin, X., Lee, J.H., Choi, J.W., 2022. Catalytic co-pyrolysis of woody biomass with waste plastics: Effects of HZSM-5 and pyrolysis temperature on producing high-value pyrolytic products and reducing wax formation. Energy 239, 121739.
Jung, S., Kim, J.H., Tsang, Y.F., Song, H., Kwon, E.E., 2022. Valorizing plastic toy wastes to flammable gases through CO2-mediated pyrolysis with a Co-based catalyst. Journal of Hazardous Materials 434, 128850.
Jung, S.H., Cho, M.H., Kang, B.S., Kim, J.S., 2010. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology 91, 277-284.
Kaminsky, W., 2021. Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Communications 8, 100023.
Kartik, S., Balsora, H.K., Sharma, M., Saptoro, A., Jain, R.K., Joshi, J.B., Sharma, A., 2022. Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis – A review. Thermal Science and Engineering Progress 32, 101316.
Kassargy, C., Awad, S., Burnens, G., Kahine, K., Tazerout, M., 2018. Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel 224, 764-773.
Kathalingam, A., Vikraman, D., Karuppasamy, K., Kim, H.S., 2022. Water mediated electrochemical conversion of PMMA and other organic residues into graphene and carbon materials. Ceramics International.
Kumagai, S., Nakatani, J., Saito, Y., Fukushima, Y., Yoshioka, T., 2020a. Latest Trends and Challenges in Feedstock Recycling of Polyolefinic Plastics. Journal of the Japan Petroleum Institute 63, 345-364.
Kumagai, S., Yamasaki, R., Kameda, T., Saito, Y., Watanabe, A., Watanabe, C., Teramae, N., Yoshioka, T., 2020b. Catalytic Pyrolysis of Poly(ethylene terephthalate) in the Presence of Metal Oxides for Aromatic Hydrocarbon Recovery Using Tandem μ-Reactor-GC/MS. Energy & Fuels 34, 2492-2500.
Kurniawati, D., Putra, N., Abdullah, N., Ibnu Hakim, I., Nurrokhmat, A., 2021. An experimental analysis of diesel fuel produced from HDPE (high-density polyethylene) waste using thermal and catalytic pyrolysis with passive heat pipe cooling system. Thermal Science and Engineering Progress 23, 100917.
Li, D., Lei, S., Wang, P., Zhong, L., Ma, W., Chen, G., 2021. Study on the pyrolysis behaviors of mixed waste plastics. Renewable Energy 173, 662-674.
Liu, X., Burra, K.R.G., Wang, Z., Li, J., Che, D., Gupta, A.K., 2021. Towards enhanced understanding of synergistic effects in co-pyrolysis of pinewood and polycarbonate. Applied Energy 289, 116662.
Liu, Y., Fu, W., Liu, T., Zhang, Y., Li, B., 2022. Microwave pyrolysis of polyethylene terephthalate (PET) plastic bottle sheets for energy recovery. Journal of Analytical and Applied Pyrolysis 161, 105414.
Lopez-Urionabarrenechea, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., 2015. Upgrading of chlorinated oils coming from pyrolysis of plastic waste. Fuel Processing Technology 137, 229-239.
Luo, W., Fan, Z., Wan, J., Hu, Q., Dong, H., Zhang, X., Zhou, Z., 2021. Study on the reusability of kaolin as catalysts for catalytic pyrolysis of low-density polyethylene. Fuel 302.
Luo, W., Hu, Q., Fan, Z.y., Wan, J., He, Q., Huang, S.x., Zhou, N., Song, M., Zhang, J.c., Zhou, Z., 2020. The effect of different particle sizes and HCl-modified kaolin on catalytic pyrolysis characteristics of reworked polypropylene plastics. Energy 213.
Maniscalco, M., La Paglia, F., Iannotta, P., Caputo, G., Scargiali, F., Grisafi, F., Brucato, A., 2021. Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance. Journal of the Energy Institute 96, 234-241.
Marino, A., Aloise, A., Hernando, H., Fermoso, J., Cozza, D., Giglio, E., Migliori, M., Pizarro, P., Giordano, G., Serrano, D.P., 2021. ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catalysis Today.
Mensah, I., Ahiekpor, J.C., Herold, N., Bensah, E.C., Pfriem, A., Antwi, E., Amponsem, B., 2022. Biomass and plastic co-pyrolysis for syngas production: Characterisation of Celtis mildbraedii sawdust as a potential feedstock. Scientific African 16, e01208.
Nisar, J., Ali, G., Shah, A., Farooqi, Z.H., Iqbal, M., Khan, S., Sherazi, S.T.H., Sirajuddin, 2021. Production of fuel oil and combustible gases from pyrolysis of polystyrene waste: Kinetics and thermodynamics interpretation. Environmental Technology & Innovation 24, 101996.
Oberoi, I.S., Rajkumar, P., Das, S., 2021. Disposal and recycling of plastics. Materials Today: Proceedings 46, 7875-7880.
Odejobi, O.J., Oladunni, A.A., Sonibare, J.A., Abegunrin, I.O., 2020. Oil yield optimization from co-pyrolysis of low-density polyethylene (LDPE), polystyrene (PS) and polyethylene terephthalate (PET) using simplex lattice mixture design. Fuel Communications 2-5, 100006.
Park, K.B., Choi, M.J., Chae, D.Y., Jung, J., Kim, J.S., 2022. Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil. Energy 244, 122583.
Park, K.B., Jeong, Y.S., Kim, J.S., 2019. Activator-assisted pyrolysis of polypropylene. Applied Energy 253.
Peng, C., Feng, W., Zhang, Y., Guo, S., Yang, Z., Liu, X., Wang, T., Zhai, Y., 2021. Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading. Energy 219, 119670.
Peng, Y., Wang, Y., Ke, L., Dai, L., Wu, Q., Cobb, K., Zeng, Y., Zou, R., Liu, Y., Ruan, R., 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management 254, 115243.
Platnieks, O., Barkane, A., Ijudina, N., Gaidukova, G., Thakur, V.K., Gaidukovs, S., 2020. Sustainable tetra pak recycled cellulose / Poly(Butylene succinate) based woody-like composites for a circular economy. Journal of Cleaner Production 270, 122321.
Prabu, S., Chiang, K.Y., 2021. Ni based nanoparticle catalysts for catalytic coffee residues gasification and using spent catalyst deposited carbon for energy storage applications.
Pyo, S., Kim, Y.M., Park, Y., Lee, S.B., Yoo, K.S., Ali Khan, M., Jeon, B.H., Jun Choi, Y., Hoon Rhee, G., Park, Y.K., 2021. Catalytic pyrolysis of polypropylene over Ga loaded HZSM-5. Journal of Industrial and Engineering Chemistry 103, 136-141.
Rathnayake, D., Ehidiamhen, P.O., Egene, C.E., Stevens, C.V., Meers, E., Mašek, O., Ronsse, F., 2021. Investigation of biomass and agricultural plastic co-pyrolysis: Effect on biochar yield and properties. Journal of Analytical and Applied Pyrolysis 155, 105029.
Rehan, M., Miandad, R., Barakat, M.A., Ismail, I.M.I., Almeelbi, T., Gardy, J., Hassanpour, A., Khan, M.Z., Demirbas, A., Nizami, A.S., 2017. Effect of zeolite catalysts on pyrolysis liquid oil. International Biodeterioration & Biodegradation 119, 162-175.
Samal, B., Vanapalli, K.R., Dubey, B.K., Bhattacharya, J., Chandra, S., Medha, I., 2021. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters. Science of The Total Environment 794, 148723.
Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P., 2019. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management 239, 395-406.
Singh, S., Tagade, A., Verma, A., Sharma, A., Tekade, S.P., Sawarkar, A.N., 2022. Insights into kinetic and thermodynamic analyses of co-pyrolysis of wheat straw and plastic waste via thermogravimetric analysis. Bioresource Technology 356, 127332.
Sivagami, K., Divyapriya, G., Selvaraj, R., Madhiyazhagan, P., Sriram, N., Nambi, I., 2021. Catalytic pyrolysis of polyolefin and multilayer packaging based waste plastics: A pilot scale study. Process Safety and Environmental Protection 149, 497-506.
Sogancioglu, M., Yucel, A., Yel, E., Ahmetli, G., 2017. Production of Epoxy Composite from the Pyrolysis Char of Washed PET Wastes. Energy Procedia 118, 216-220.
Straka, P., Bičáková, O., Šupová, M., 2022. Slow pyrolysis of waste polyethylene terephthalate yielding paraldehyde, ethylene glycol, benzoic acid and clean fuel. Polymer Degradation and Stability 198.
Sun, C., Li, C., Tan, H., Zhang, Y., 2019. Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Conversion and Management 202, 112212.
Sun, J., Luo, J., Lin, J., Ma, R., Sun, S., Fang, L., Li, H., 2022. Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology. Energy 247, 123547.
Sun, K., Wang, W., Themelis, N.J., Thanos Bourtsalas, A.C., Huang, Q., 2021a. Catalytic co-pyrolysis of polycarbonate and polyethylene/polypropylene mixtures: Promotion of oil deoxygenation and aromatic hydrocarbon formation. Fuel 285, 119143.
Sun, T., Lei, T., Li, Z., Zhang, Z., Yang, S., Xin, X., Zhang, M., He, X., Zhang, Q., Zhang, L., 2021b. Catalytic co-pyrolysis of corn stalk and polypropylene over Zn-Al modified MCM-41 catalysts for aromatic hydrocarbon-rich oil production. Industrial Crops and Products 171, 113843.
Supriyanto, Ylitervo, P., Richards, T., 2021. Gaseous products from primary reactions of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis 158, 105248.
Suzuki, G., Uchida, N., Tuyen, L.H., Tanaka, K., Matsukami, H., Kunisue, T., Takahashi, S., Viet, P.H., Kuramochi, H., Osako, M., 2022. Mechanical recycling of plastic waste as a point source of microplastic pollution. Environmental Pollution 303, 119114.
Tian, X., Zeng, Z., Liu, Z., Dai, L., Xu, J., Yang, X., Yue, L., Liu, Y., Ruan, R., Wang, Y., 2022. Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: Comparison of HZSM-5, Hβ, HY and MCM-41. Journal of Cleaner Production 358, 131989.
Usachev, S.V., Lomakin, S.M., Koverzanova, E.V., Shilkina, N.G., Levina, I.I., Prut, E.V., Rogovina, S.Z., Berlin, A.A., 2022. Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermochimica Acta 712, 179227.
Van Nguyen, Q., Choi, Y.S., Choi, S.K., Jeong, Y.W., Han, S.Y., 2021. Co-pyrolysis of coffee-grounds and waste polystyrene foam: Synergistic effect and product characteristics analysis. Fuel 292, 120375.
Verma, A., Sharma, S., Pramanik, H., 2021. Pyrolysis of waste expanded polystyrene and reduction of styrene via in-situ multiphase pyrolysis of product oil for the production of fuel range hydrocarbons. Waste Management 120, 330-339.
Wang, C., Jiang, Z., Song, Q., Liao, M., Weng, J., Gao, R., Zhao, M., Chen, Y., Chen, G., 2021. Investigation on hydrogen-rich syngas production from catalytic co-pyrolysis of polyvinyl chloride (PVC) and waste paper blends. Energy 232, 121005.
Wang, R., Yishui, T., Zhao, L., Yao, Z., Meng, H., Hou, s., 2014. Industrial analysis and determination of calorific value for biomass based on thermogravimetry. Transactions of the Chinese Society of Agricultural Engineering 30.
Wang, S., zhang, Y., Shan, R., Gu, J., Huhe, T., Ling, X., Yuan, H., Chen, Y., 2022. High-yield H2 production from polypropylene through pyrolysis-catalytic reforming over activated carbon based nickel catalyst. Journal of Cleaner Production 352, 131566.
Wang, X., Jin, Q., Zhang, J., Li, Y., Li, S., Mikulčić, H., Vujanović, M., Tan, H., Duić, N., 2018. Soot formation during polyurethane (PU) plastic pyrolysis: The effects of temperature and volatile residence time. Energy Conversion and Management 164, 353-362.
Wu, J., Zhang, X., Xie, Z., Zhang, Q., Wang, C., Jiao, G., Yang, J., 2022a. Tunable polymorphic crystal modification, phase transition and biodegradability of poly(1,4-butylene adipate) by a bio-derived metabolite with low molecular weight. Polymer Degradation and Stability 200, 109935.
Wu, X., Bourbigot, S., Li, K., Zou, Y., 2022b. Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Safety Journal 128, 103543.
Xu, D., Yang, S., Su, Y., Shi, L., Zhang, S., Xiong, Y., 2021. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas. Waste Management 121, 95-104.
Xue, Y., Zhou, S., Brown, R.C., Kelkar, A., Bai, X., 2015. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156, 40-46.
Yan, F., Zhang, L., Hu, Z., Cheng, G., Jiang, C., Zhang, Y., Xu, T., He, P., Luo, S., Xiao, B., 2010. Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bed reactor: Influence of particle size and residence time on gas yield and syngas composition. International Journal of Hydrogen Energy 35, 10212-10217.
Yao, D., Li, H., Dai, Y., Wang, C.H., 2021. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chemical Engineering Journal 408.
Yousef, S., Eimontas, J., Zakarauskas, K., Striūgas, N., 2022. A new sustainable strategy for oil, CH4 and aluminum recovery from metallised food packaging plastics waste using catalytic pyrolysis over ZSM-5 zeolite catalyst. Thermochimica Acta 713, 179223.
Zhang, H., Zhou, X.L., Shao, L.M., Lü, F., He, P.J., 2021. Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation. Science of The Total Environment 772, 145309.
Zhang, X., Lei, H., Yadavalli, G., Zhu, L., Wei, Y., Liu, Y., 2015. Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144, 33-42.
Zhang, Y., Ji, G., Chen, C., Wang, Y., Wang, W., Li, A., 2020. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206, 106455.
Zhao, X., Zhan, L., Xie, B., Gao, B., 2018. Products derived from waste plastics (PC, HIPS, ABS, PP and PA6) via hydrothermal treatment: Characterization and potential applications. Chemosphere 207, 742-752.
Zhou, L., Wang, Y., Huang, Q., Cai, J., 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology 87, 963-969.
江康鈺,姚彥丞,呂承翰,陳又新,「塑膠廢棄物共同熱裂解與協同效應之動力學 研究」,中華民國環境工程學會 2016 廢棄物處理技術研討會,桃園市,2016。
行政院環境保護署,網址:https://waste.epa.gov.tw/RWD/Statistics/?page=Year1,2021。
行政院主計總處,網址:https://www.dgbas.gov.tw/lp.asp?CtNode=1481&CtUnit=690&BaseDSD=7&mp=1,民國110年。
姚彥丞,「塑膠廢棄催化裂解產能效率與裂解油物種特性變化之評估研究」,中華民國環境工程學會 2017 廢棄物處理技術研討會,臺北市,2017。
張佳琪,「生質塑膠熱裂解產能效率之評估研究」,中華民國環境工程學會 2021 廢棄物處理技術研討會,台中市,2021。
陳宣宇,「含鋁塑膠包裝廢棄物熱處理回收鋁及能源之可行性」,中華民國環境工程學會 2021 廢棄物處理技術研討會,台中市,2021。
楊鎧丞,「應用共裂解技術轉換工程塑膠為能源之可行性研究」,國立中央大學環境 工程研究所,碩士論文,2022。
歐盟,網址:
https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf,2021
戴華山,郭耀升,許祉祥,張一岑,「以熱裂解模式探討聚丙烯(PP)循環再利用之特徵研究」,中華民國環境工程學會 2010 廢棄物處理技術研討會,高雄, 2010。
戴華山,許祉祥,賀偉雄,王永泰,「廢棄生質塑膠(PLA)容器之熱裂解動力學性質研究」,中華民國環境工程學會 2012 廢棄物處理技術研討會,高雄,2012。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明