博碩士論文 108327021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.137.215.234
姓名 蔡有信(Yu-Hsin Tsai)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 表面結構波導型擴增實境裝置的二維擴瞳技術之研究
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是對光波導系統進行模擬與分析,而光波導系統上會有耦入和耦出結構,藉由這兩個繞射結構可以使光耦入及耦出光波導。我們分別使用嚴格耦合波分析法(Rigorous coupled-wave Analysis;RCWA)和有限時域差分法(Finite-Difference Time-Domain;FDTD)模擬分析出繞射結構的散射行為並將其彙整成雙向散射分佈函數(Bidirectional Scattering Distribution Function;BSDF)。此BSDF在光波導系統中,可以用來描述當光碰到由BSDF建立的區域面後,光在之後傳播行為;並且會對繞射結構的占空比和高寬比來調整結構參數,找出最佳的結構參數。而為了增加人眼瞳孔可以接收影像的範圍,我們使用了一維出瞳擴束和二維出瞳擴束技術,在一維出瞳擴束技術部分,成功各別設計出綠光、紅光、藍光特定波長的耦入結構和耦出結構,模擬分析的結果為:出光率分別是19.25 %、19.27 %和19.28%,而均勻度可以達到99.49%、99.44%和98.63%;二維出瞳擴束技術部分,是在一維出瞳擴束技術基礎下,在光進光波導系統前,先藉由分光器和稜鏡的組合進行分光處理,讓光束是以三束光並由各個耦入結構和耦出結構在光波導系統裡傳導並耦出,出光率分別是16.32%、16.34%和16.34%,而均勻度分別是99.38%、99.33%和98.52%。
摘要(英) This studyis mainly to simulate and analyze the optical waveguide system, and the optical waveguide system has coupling-in and out-coupling structures, and the light can be coupled in and out of the optical waveguide through these two diffraction structures. We use RCWA and FDTD to simulate and analyze the scattering behavior of the diffraction structure and integrate them into a BSDF. In the optical waveguide system, this BSDF can be used to describe the propagation behavior of light after it hits the area surface established by BSDF, the light propagates later; and the structural parameters will be adjusted for the duty ratio and aspect ratio of the diffractive structure to find the best structural parameters. In order to increase the range of images that can be received by the pupil of the human eye, we have used 1D image exit pupil expansion and 2D image exit pupil expansion technology. In the part of 1D image exit pupil expansion technology, the in-coupling structure and out-coupling structure of the specific wavelengths of green light, red light and blue light have been successfully designed respectively. The results of simulation analysis are: the light output rate is 19.25%, 19.27% and 19.28% respectively, and the uniformity can reach 99.49%, 99.44% and 98.63%; The part of the 2D image exit pupil beam expansion technology is based on the 1D image exit pupil beam expansion technology. Before the light enters the optical waveguide system, the light is split by the combination of the beam splitter and the prism, so that the beam is divided into three beams. And it is guided and coupled out in the optical waveguide system by each coupling-in structure and out-coupling structure, the light output rate is 16.32%, 16.34% and 16.34% respectively, and the uniformity is 99.38%, 99.33% and 98.52% respectively.
關鍵字(中) ★ 擴增實境
★ 微結構
★ 光波導
★ 出瞳擴束器
關鍵字(英) ★ augmented reality
★ microstructure
★ optical waveguide
★ exit pupil expander
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章、緒論 1
1-1研究背景 1
1-2研究動機與目的 3
1-3文獻回顧 4
1-3-1繞射波導元件 4
1-3-2出瞳擴束器 5
1-4論文架構 8
第二章、出瞳擴束技術 9
2-1一維出瞳擴束 9
2-2二維出瞳擴束 11
第三章、數值模擬方法 13
3-1有限時域差分法[22] 13
3-1-1馬克斯威爾方程式[23] 13
3-1-2 FDTD方程式 14
3-1-3三維FDTD方程式 16
3-1-4邊界條件 18
3-2嚴格耦合波分析法[25] 19
3-3蒙地卡羅光線追跡法 24
3-4雙向散射分佈函數 24
第四章、模擬方法設定與分析 26
4-1繞射結構BSDF散射特性之模擬與分析 27
4-1-1耦出結構之模擬邊界及參數設定 27
4-1-2耦出結構之模擬結果分析與討論 29
4-1-3耦入結構之模擬邊界及參數設定 44
4-1-4耦入結構之模擬結果分析與討論 46
4-2均勻耦出處理 51
4-3光波導系統之模擬與分析 53
4-3-1子區域間距 53
4-3-2一維出瞳擴束光波導系統模擬結果 56
4-3-3楔形光波導 58
4-3-4二維出瞳擴束光波導系統模擬結果 60
第五章、結論與未來展望 64
5-1結論 64
5-2未來展望 65
參考文獻 66

參考文獻 [1]Global Augmented Reality Market By Component. 2021. Retrieved from
https://www.kbvresearch.com/augmented-reality-market/
[2]Understanding Waveguide: the Key Technology for Augmented Reality Near-eye Display (Part I). 2019. Retrieved from
https://virtualrealitypop.com/understanding-waveguide-the-key-technology-for-augmented-reality-near-eye-display-part-i-2b16b61f4bae
[3]Understanding Waveguide: the Key Technology for Augmented Reality Near-eye Display (Part II). 2019. Retrieved from
https://arvrjourney.com/understanding-waveguide-the-key-technology-for-augmented-reality-near-eye-display-part-ii-fe4bf3490fa.
[4]Zhan, Tao, et al. "Augmented reality and virtual reality displays: perspectives and challenges." Iscience 23.8 (2020): 101397.
[5]Mukawa, Hiroshi, et al. "A full‐color eyewear display using planar waveguides with reflection volume holograms." Journal of the society for information display 17.3 (2009): 185-193.
[6]Photonics in Sony’s novel display technologies. 2019. Retrieved from
https://www.leti-innovation-days.com/Documents/LID2019/WORKSHOPS/MONDAY_JUNE_24TH/Virtual_Reality_Augmented_Reality/03.Photonics-in-Sony-novel-display-technologies_H.Kikuchi.pdf
[7]Levola, Tapani, and Pasi Laakkonen. "Replicated slanted gratings with a high refractive index material for in and outcoupling of light." Optics Express 15.5 (2007): 2067-2074.
[8]Yoshida, Takuji, et al. "A plastic holographic waveguide combiner for light‐weight and highly‐transparent augmented reality glasses." Journal of the Society for Information Display 26.5 (2018): 280-286.
[9]Weng, Yishi, et al. "Liquid-crystal-based polarization volume grating applied for full-color waveguide displays." Optics Letters 43.23 (2018): 5773-5776.
[10]Laakkonen, Pasi, et al. "High efficiency diffractive incouplers for light guides." Integrated Optics: Devices, Materials, and Technologies XII. Vol. 6896. SPIE, 2008.
[11]Yu, Chao, et al. "Highly efficient waveguide display with space-variant volume holographic gratings." Applied optics 56.34 (2017): 9390-9397.
[12]Jang, Changwon, et al. "Design and fabrication of freeform holographic optical elements." ACM Transactions on Graphics (TOG) 39.6 (2020): 1-15.
[13]Xiong, Jianghao, and Shin-Tson Wu. "Rigorous coupled-wave analysis of liquid crystal polarization gratings." Optics Express 28.24 (2020): 35960-35971.
[14]Urey, Hakan. "Diffractive exit-pupil expander for display applications." Applied Optics 40.32 (2001): 5840-5851.
[15]Urey, Hakan, and Karlton D. Powell. "Microlens-array-based exit-pupil expander for full-color displays." Applied optics 44.23 (2005): 4930-4936.
[16]Levola, Tapani. "Diffractive optics for virtual reality displays." Journal of the Society for Information Display 14.5 (2006): 467-475.
[17]Kress, Bernard, Victorien Raulot, and Michel Grossman. "Exit pupil expander for wearable see-through displays." Photonic Applications for Aerospace, Transportation, and Harsh Environment III. Vol. 8368. SPIE, 2012.
[18]Grey, David J. "The ideal imaging AR waveguide." Digital Optical Technologies 2017. Vol. 10335. SPIE, 2017.
[19]Waldern, Jonathan David, Alastair John Grant, and Milan Momcilo Popovich. "17‐4: DigiLens AR HUD Waveguide Technology." SID Symposium Digest of Technical Papers. Vol. 49. No. 1. 2018.
[20]McLamb, Micheal, et al. "Diffraction gratings for uniform light extraction from light guides." 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT). IEEE, 2019.
[21]蘇奕偉,「應用於波導式擴增實境裝置之擴瞳成像均勻化技術的研究」,國立中央大學光機電工程研究所碩士論文,民國111年
[22]Yee, Kane. "Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media." IEEE Transactions on antennas and propagation 14.3 (1966): 302-307.
[23]Maxwell, James Clerk. "VIII. A dynamical theory of the electromagnetic field." Philosophical transactions of the Royal Society of London 155 (1865): 459-512.
[24]Berenger, J-P. "Perfectly matched layer for the FDTD solution of wave-structure interaction problems." IEEE Transactions on antennas and propagation 44.1 (1996): 110-117.
[25]Moharam, M. G., et al. "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings." JOSA a 12.5 (1995): 1068-1076.
[26]Metropolis, Nicholas, and Stanislas Ulam. "The Monte Carlo Method Journal of the American Statistical Association, vol. 44, no 247." (1949): 335-341.
[27]Wittwer, David C., and Richard W. Ziolkowski. "How to design the imperfect Berenger PML." Electromagnetics 16.4 (1996): 465-485.
[28]Findlay, R. P., and P. J. Dimbylow. "Variations in calculated SAR with distance to the perfectly matched layer boundary for a human voxel model." Physics in Medicine & Biology 51.23 (2006): N411.
[29]Laakso, Ilkka, Sami Ilvonen, and Tero Uusitupa. "Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations." Physics in Medicine & Biology 52.23 (2007): 7183.
[30]Su, Wei, et al. "Polarization-independent beam focusing by high-contrast grating reflectors." Optics Communications 325 (2014): 5-8.
[31]Callens, Michiel Koen, et al. "RCWA and FDTD modeling of light emission from internally structured OLEDs." Optics express 22.103 (2014): A589-A600.
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明