國立中央大學 113 學年度碩士班考試入學試題

所別: 統計研究所碩士班 不分組(一般生)

第 / 頁 / 共 / 頁

統計研究所 碩士班 不分組(在職生)

科目: 基礎數學

*本科考試可使用計算器,廠牌、功能不拘

計算題應詳列計算過程,無計算過程者不予計分

1. Calculate

(a)
$$\int_{-\infty}^{\infty} x^2 e^{-(x-1)^2/2} dx$$
, (b) $\int_{0}^{1} x^5 (1-x)^6 dx$. (9+9=18%)

2. Test for convergence (write down the reason):

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
, (b) $\sum_{n=1}^{\infty} \frac{3^n}{n \cdot 5^n}$. (8+8=16%)

3. Find the minimum and maximum value of $x^2 + y^2 + z^2$ subject to

the constraint conditions
$$\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1$$
 and $z = x + y$. (16%)

4. Let (16%)

$$A = \begin{bmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{bmatrix}.$$

Find A^{10} . (Hint: Diagonalize A s.t. $A = P\Lambda P^{-1}$)

5. (a) Suppose that (9+9=18%)

$$A = \begin{pmatrix} A_{11} & C \\ 0 & A_{22} \end{pmatrix}, B = \begin{pmatrix} B_{11} & 0 \\ C & B_{22} \end{pmatrix}$$

where A_{11} , A_{22} , B_{11} and B_{22} are invertible matrices.

Verify that

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} & -A_{11}^{-1}CA_{22}^{-1} \\ 0 & A_{22}^{-1} \end{pmatrix}, B^{-1} = \begin{pmatrix} B_{11}^{-1} & 0 \\ -B_{11}^{-1}CB_{22}^{-1} & B_{22}^{-1} \end{pmatrix}$$

(b) Derive the inverse of the following matrix

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
3 & 7 & 2 & 3 \\
2 & 5 & 1 & 2
\end{pmatrix}$$

6. Suppose that λ is the eigenvalue of the square matrix A. (8+8=16%)

(a) Verify that λ^k is the eigenvalue of A^k , k is a positive integer.

(b) If X is the eigenvector of A associated with λ , then what is the eigenvector of A^k associated with λ^k .