博碩士論文 101581011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:118 、訪客IP:3.14.144.108
姓名 李得民(te-min Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用迭代濾波優化之經驗模態分解法於心電圖與腦電波分析
(Analyses of ECG/EEG signals using the iterative filtering based empirical mode decomposition)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 本論文研究中,我們應用全息希爾伯譜分析(HHSA)方法來分析心電圖中的心律變異(HRV)。另外也使用典型相關(CCA),分析了人類聽覺穩態響應(ASSR),結合全息希爾伯譜分析(HHSA)。 典型相關分析(CCA)用於提取聽覺穩態響應(ASSR)相關信號特徵,並使用全息希爾伯譜分析(HHSA) 將提取的人類聽覺穩態響應(ASSR),分解為調幅(AM)分量和調頻(FM)分量,其中FM頻率代表快速變化的模內頻率,AM頻率代表緩慢變化的模間頻率。
在心律變異(HRV)的分析當中,全息希爾伯譜分析 (HHSA) 打算將測量的心跳間隔 (IBI) 信號解釋為乘法振盪信號(載波)與調製信號(包絡波)的組合。瞬間採用頻率分析(IFA)計算頻率調製(FM)和幅度調製(AM) 每個時間點的頻率。整個測量 IBI 信號的 FM-AM 分佈概率累積並顯示在全息-希爾伯特譜 (HHS) 上。
我們招募了 20 名健康受試者參與我們的心電圖研究。每個受試者被要求觀看兩個視頻片段,包括一個放鬆的視頻片段和一個恐怖視頻剪輯。我們觀察到VHF頻段由~0.05 Hz AM 頻率調製在全息希爾伯譜(HHSA)分析上。VHF功率值顯著降低,觀看恐怖視頻剪輯的情況與觀看輕鬆視頻剪輯的情況相比。我們還發現在觀看恐怖視頻剪輯時,VHF和高頻 (HF) 頻段的功率都降低了。
而在ASSR的分析當中,我們目的在研究AM和FM光譜37赫茲,穩態聽覺刺激中的 人類聽覺穩態響應(ASSR)反應。招募了二十五名健康受試者參與這項研,每個受試者被要求參加兩次聽覺刺激的實驗,包括一隻右耳和一隻左耳,單耳的穩態聽覺刺激。在全息希爾伯譜分析 (HHSA)圖形中,37 Hz(基頻)和 74 Hz(一次諧波頻率)聽覺已成功提取響應。檢查 AM 頻譜、37 Hz 和 74 Hz 聽覺響應由不同的 AM 光譜調製,每個 AM 光譜至少具有三個複合頻率。與傳統傅里葉譜的結果相反,在 37 Hz 處出現分頻,並且在傅里葉光譜中,光譜峰在 74 Hz 處被遮擋。所提出的方法有效地糾正了時變幅度變化引起的分頻問題。

最後全息希爾伯譜分析(HHSA),提供了一個全新的視角來分析心律變異(HRV)和穩態響應 (SSR), 因此是一個有用的分析判讀工具,在穩態響應(SSR)中,可以減少避免,因傳統傅里葉頻譜中的幅度調製引起的錯誤、或誤導性的判讀。



關鍵字:典型相關分析、穩態響應、全息希爾伯譜分析
摘要(英) In this thesis, we applied the Holo-Hilbert spectral analysis (HHSA) method to analyze heart rhythm variability (HRV) in ECG. Human Auditory steady-state response analysis (ASSR) Canonical Correlation Analysis (CCA) combined with Holo-Hilbert spectral analysis (HHSA) was also performed using canonical correlation analysis. CCA is used to extract ASSR-related signal features, and the extracted ASSR response is decomposed into amplitude modulation (AM) components and frequency modulation (FM) components using Holo-Hilbert spectral analysis (HHSA), where FM frequency represents a rapidly changing intra-mode frequency, AM frequencies represent slowly varying intermodal frequencies. In the analysis of heart rhythm variability (HRV), Holo-Hilbert spectral analysis (HHSA) intends to interpret the measured heartbeat interval (IBI) signal as a combination of a multiplicative oscillatory signal (carrier wave) and a modulating signal (envelope wave). Instantaneous frequency analysis (IFA) was used to calculate the frequency of frequency modulation (FM) and amplitude modulation (AM) at each time point. The FM-AM distribution probabilities of the entire measured IBI signal are accumulated and displayed on the Holographic-Hilbert Spectrum (HHS).
Twenty healthy subjects were recruited for our ECG study. Each subject was asked to watch two video clips, including a relaxing video clip and a horror video clip. We observed that the VHF band was modulated by ~0.05 Hz AM frequency on Holo-Hilbert spectral analysis(HHSA). VHF power values were significantly lower when watching a horror video clip compared to watching a relaxing video clip. We also found reduced power on both the VHF and high frequency (HF) bands when watching horror video clips.
In the ASSR analysis, we aimed to study the ASSR responses to 37 Hz, steady-state auditory stimuli in the AM and FM spectra.
Twenty-five healthy subjects were recruited to participate in this study, and each subject was asked to participate in two auditory stimulation experiments, including one right ear and one left ear, and a steady-state auditory stimulus for one ear. Hearing responses at 37 Hz (fundamental frequency) and 74 Hz (first harmonic frequency) were successfully extracted in the Holo-Hilbert spectral Analysis (HHSA) graph. Examining the AM spectrum, the 37 Hz and 74 Hz auditory responses are modulated by different AM spectra, each with at least three composite frequencies. Contrary to the results of conventional Fourier spectroscopy, frequency division occurs at 37 Hz, and in Fourier spectroscopy, the spectral peak is blocked at 74 Hz. The proposed method effectively corrects the frequency division problem caused by time-varying amplitude changes.
Finally, Holo-Hilbert spectral Analysis (HHSA) provides a new perspective to analyze HRV and Steady State Response (SSR), and thus is a useful analytical interpretation tool, in Steady State Response (SSR), avoidance can be reduced, since False, or misleading interpretations caused by amplitude modulation in conventional Fourier spectrum.



Keywords: Heart rhythm variability、Auditory steady-state response、Canonical correlation analysis, Holo-Hilbert spectral Analysis
關鍵字(中) ★ 典型相關分析
★ 穩態響應
★ 全息希爾伯譜分析
關鍵字(英) ★ Heart rhythm variability
★ Auditory steady-state response
★ Canonical correlation analysis
★ Holo-Hilbert spectral Analysis
論文目次 摘要 ............................................................................................................................................ I
ABSTRACT ........................................................................................................................... III
LIST OF FIGURES ............................................................................................................... VI
LIST OF TABLES ................................................................................................................. IX
CHAPTER 1 INTRODUCTION ............................................................................................. 1
CHAPTER 2 MATERIALS AND METHODS ...................................................................... 8
2.1 ECG SUBJECTS AND TASK .................................................................................................. 8
2.2 EEG SUBJECTS AND TASK ................................................................................................ 11
2.2.1 Electroencephalography Recordings ....................................................................... 11
2.2.2 Canonical Correlation Analysis and Selection Pertinent ......................................... 12
2.2.3 Analysis of ASSR Source Activities Using Minimum Norm Estimation ................ 16
2.2.4 Full Information Spectral Analysis of ASSR Source Activities Using Holo-Hilbert
Spectral Analysis (HHSA) ................................................................................................ 18
CHAPTER 3 RESULTS ......................................................................................................... 22
3.1 STUDY RESULT OF HEART-RATE VARIABILITY................................................................... 22
3.2 STUDY RESULT OF AUDITORY STEADY-STATE RESPONSES ANALYSIS .............................. 28
CHAPTER 4 DISCUSSION .................................................................................................. 32
CHAPTER 5 CONCLUSIONS ............................................................................................. 38
REFERENCES ....................................................................................................................... 39
參考文獻 [1] J.H. Kang, J.K. Kim, S.H. Hong, C.H. Lee, B.Y. Choi, Heart rate variability for
quantification of autonomic dysfunction in fibromyalgia, Ann. Rehab. Med. 40 (2) (2016)
301, https://doi.org/10.5535/arm.2016.40.2.301.
[2] F. Shaffer, J. Ginsberg, An overview of heart rate variability metrics and norms, Front.
Public Health 5 (2017) 258.
[3] M. Malik, Heart rate variability: standards of measurement, physiological interpretation and
clinical use. Task Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, Ann.
[4] F. Shaffer, et al., A healthy heart is not a metronome: an integrative review of the heart’s
anatomy and heart rate variability, Front. Psychol. 5 (2014) 1040.
[5] D. Bonaduce, et al., Left ventricular remodelling in the year after myocardial infarction: an
echocardiographic, haemodynamic, and radionuclide angiographic study, Coron. Artery Dis.
5 (2) (1994) 155–162.
[6] J.T. Bigger, J.L. Fleiss, R.C. Steinman, L.M. Rolnitzky, R.E. Kleiger, J.N. Rottman,
Frequency domain measures of heart period variability and mortality after myocardial
infarction, Circulation 85 (1) (1992) 164–171.
[7] A.J. Shah, R. Lampert, J. Goldberg, E. Veledar, J.D. Bremner, V. Vaccarino, Posttraumatic
stress disorder and impaired autonomic modulation in male twins, Biol. Psychiatry 73 (11)
(2013) 1103–1110.
[8] R.M. Carney, K.E. Freedland, P.K. Stein, G.E. Miller, B. Steinmeyer, M.W. Rich, S. P.
Duntley, Heart rate variability and markers of inflammation and coagulation in depressed
patients with coronary heart disease, J. Psychosom. Res. 62 (4) (2007) 463–467.
[9] T. Theorell, Y. Liljeholm-Johansson, H. Bj¨ork, M. Ericson, Saliva testosterone and heart
rate variability in the professional symphony orchestra after “public faintings” of an
orchestra member, Psychoneuroendocrinology. 32 (6) (2007) 660–668.
[10] S. Akselrod, et al., Power spectrum analysis of heart rate fluctuation: a quantitative probe
40
of beat-to-beat cardiovascular control, Science 213 (4504) (1981) 220–222.
[11] P. Holzman, J. Kagan, Whither or wither personality research, in: D.W. Fiske (Ed.),
Personality research, methods, and theory: a Festschrift honouring, 1995, pp. 3–11.
[12] P.M. Lehrer, Biofeedback training to increase heart rate variability, Principles Practice
Stress Manage. 3 (2007) 227–248.
[13] P. Grossman, E.W. Taylor, Toward understanding respiratory sinus arrhythmia: relations to
cardiac vagal tone, evolution and biobehavioral functions, Biol. Psychol. 74 (2) (2007)
263–285.
[14] M. Pagani, et al., Power spectral density of heart rate variability as an index of sympathovagal
interaction in normal and hypertensive subjects, J. Hypertens. 2 (3) (1984) S383–385.
[15] R.E. Kleiger, et al., Heart rate variability: measurement and clinical utility, Ann.
Noninvasive Electrocardiol. 10 (1) (2005) 88–101.
[16] H. Otzenberger, C. Gronfier, C. Simon, A. Charloux, J. Ehrhart, F. Piquard, G.
Brandenberger, Dynamic heart rate variability: a tool for exploring sympathovagal balance
continuously during sleep in men, Am. J. Physiol.- Heart Circulatory Physiol. 275 (3) (1998)
H946–H950.
[17] N.E. Huang, Hilbert-Huang transform and its applications, World Scientific, 2014.
[18] C.-C. Chang, H.-Y. Hsu, T.-C. Hsiao, The interpretation of very high frequency band of
instantaneous pulse rate variability during paced respiration, Biomed. Eng. Online 13 (1)
(2014), https://doi.org/10.1186/1475-925X-13-46.
[19] M. Est´evez-B´aez, et al., Very high frequency oscillations of heart rate variability in
healthy humans and in patients with cardiovascular autonomic neuropathy, Prog. Med. Res.
(2018) 49–70.
[20] N.E. Huang, et al., On Holo-Hilbert spectral analysis: a full informational spectral
representation for nonlinear and non-stationary data, Philos. Trans. R. Soc. A 374 (2065)
(2016) 20150206.
41
[21] C.-C. Hsu, et al., Extraction of high-frequency SSVEP for BCI control using iterative
filtering based empirical mode decomposition, Biomed. Signal Process. Control 61 (2020),
102022. [22] L. Lin, Y. Wang, H. Zhou, Iterative filtering as an alternative algorithm for
empirical mode decomposition, Adv. Adaptive Data Anal. 01 (04) (2009) 543–560.
[23] J. Pan, W.J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng.
BME-32 (3) (1985) 230–236.
[24] J. Sztajzel, Heart rate variability: a noninvasive electrocardiographic method to measure
the autonomic nervous system, Swiss Med. Weekly 134 (35–36) (2004) 514–522.
[25] X. Bornas, et al., Changes in heart rate variability of flight phobics during a paced breathing
task and exposure to fearful stimuli, Int. J. Clin. Health Psychol. 6 (3) (2006) 549–563.
[26] Brenner, C.A.; Krishnan, G.P.; Vohs, J.L.; Ahn, W.-Y.; Hetrick, W.P.; Morzorati, S.L.;
O’Donnell, B.F. Steady state responses: Electrophysiological assessment of sensory
function in schizophrenia. Schizophr. Bull. 2009, 35, 1065–1077. [CrossRef] [PubMed]
[27] Vialatte, F.-B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked
potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010,
90, 418–438. [CrossRef] [PubMed]
[28] Lee, P.-L.; Yeh, C.-L.; Cheng, J.Y.-S.; Yang, C.-Y.; Lan, G.-Y. An SSVEP-based BCI
using high duty-cycle visual flicker. IEEE Trans. Biomed. Eng. 2011, 58, 3350–3359.
[CrossRef] [PubMed]
[29] Vergeer, M.; Mesik, J.; Baek, Y.; Wilmerding, K.; Engel, S.A. Orientation-selective
contrast adaptation measured with SSVEP. J. Vis. 2018, 18, 2. [CrossRef]
[30] Zhu, D.; Molina, G.G.; Mihajlovi´c, V.; Aarts, R.M. Phase synchrony analysis for SSVEPbased
BCIs. In Proceedings of the 2010 2nd International Conference on Computer
Engineering and Technology, Chengdu, China, 16–18 April 2010; IEEE: Piscataway
Township, NJ, USA, 2010; Volume 2, pp. V2-329–V322-333.
[31] Kelly, S.P.; Lalor, E.C.; Reilly, R.B.; Foxe, J.J. Visual spatial attention tracking using high42
density SSVEP data for independent brain-computer communication. IEEE Trans. Neural
Syst. Rehabil. Eng. 2005, 13, 172–178. [CrossRef]
[32] Ross, B.; Picton, T.; Herdman, A.; Pantev, C. The effect of attention on the auditory steadystate
response. Neurol. Clin. Neurophysiol. 2004, 2004, 22.
[33] Sharon, O.; Nir, Y. Attenuated fast steady-state visual evoked potentials during human
sleep. Cereb. Cortex 2018, 28, 1297–1311. [CrossRef]
[34] Xu, P.; Tian, C.; Zhang, Y.; Jing, W.; Wang, Z.; Liu, T.; Hu, J.; Tian, Y.; Xia, Y.; Yao, D.
Cortical network properties revealed by SSVEP in anesthetized rats. Sci. Rep. 2013, 3,
2496. [CrossRef]
[35] Palaniappan, R.; Mouli, S.; Balli, T.; McLoughlin, I. On the mental fatigue analysis of
SSVEP entrainment. In Proceedings of the 2018 2nd International Conference on
BioSignal Analysis, Processing and Systems (ICBAPS), Kuching, Malaysia, 24–26 July
2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 19–24.
[36] Xie, J.; Xu, G.; Luo, A.; Li, M.; Zhang, S.; Han, C.; Yan, W. The role of visual noise in
influencing mental load and fatigue in a steady-state motion visual evoked potential-based
brain-computer interface. Sensors 2017, 17, 1873. [CrossRef]
[37] Xie, J.; Xu, G.;Wang, J.; Li, M.; Han, C.; Jia, Y. Effects of mental load and fatigue on
steady-state evoked potential based brain computer interface tasks: A comparison of
periodic flickering and motion-reversal based visual attention. PLoS ONE 2016, 11,
e0163426. [CrossRef]
[38] Lee, P.-L.; Lee,W.-K.; Chang, H.-H.; Hsu, H.-T.; Yeh, T.-K. Real-Time Cognitive Load
Measurement in Classroom Environment using a Dry-Electrode EEG system. Int. J. Clin.
Med. Bioeng. 2021, 1, 46–52. [CrossRef]
[39] Cao, T.; Wan, F.; Wong, C.M.; da Cruz, J.N.; Hu, Y. Objective evaluation of fatigue by
EEG spectral analysis in steady-state visual evoked potential-based brain-computer
interfaces. Biomed. Eng. Online 2014, 13, 1–13. [CrossRef] [PubMed]
43
[40] Lopour, B.A.; Tavassoli, A.; Fried, I.; Ringach, D.L. Coding of information in the phase
of local field potentials within human medial temporal lobe. Neuron 2013, 79, 594–606.
[CrossRef]
[41] Kisley, M.A.; Cornwell, Z.M. Gamma and beta neural activity evoked during a sensory
gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation. Clin.
Neurophysiol. 2006, 117, 2549–2563. [CrossRef] [PubMed]
[42] Borst, A.; Theunissen, F.E. Information theory and neural coding. Nat. Neurosci. 1999, 2,
947–957. [CrossRef]
[43] Zhong, Z.; Henry, K.S.; Heinz, M.G. Sensorineural hearing loss amplifies neural coding
of envelope information in the central auditory system of chinchillas. Hear. Res. 2014, 309,
55–62. [CrossRef]
[44] Nasir, S.M.; Darainy, M.; Ostry, D.J. Sensorimotor adaptation changes the neural coding
of somatosensory stimuli. J. Neurophysiol. 2013, 109, 2077–2085. [CrossRef]
[45] Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations,
Plasticity; Cambridge University Press: Cambridge, UK, 2002.
[46] Aghababaiyan, K.; Shah-Mansouri, V.; Maham, B. Capacity and error probability analysis
of neuro-spike communication exploiting temporal modulation. IEEE Trans. Commun.
2019, 68, 2078–2089. [CrossRef]
[47] Borji, A.; Itti, L. Optimal attentional modulation of a neural population. Front. Comput.
Neurosci. 2014, 8, 34. [CrossRef]
[48] Wager, T.D.; Davidson, M.L.; Hughes, B.L.; Lindquist, M.A.; Ochsner, K.N. Neural
mechanisms of emotion regulation: Evidence for two independent prefrontal-subcortical
pathways. Neuron 2008, 59, 1037. [CrossRef]
[49] Pfister, J.-P.; Toyoizumi, T.; Barber, D.; Gerstner, W. Optimal spike-timing-dependent
plasticity for precise action potential firing in supervised learning. Neural Comput. 2006,
18, 1318–1348. [CrossRef] [PubMed]
44
[50] Yokota, Y.; Tanaka, S.; Miyamoto, A.; Naruse, Y. Estimation of human workload from
the auditory steady-state response recorded via a wearable electroencephalography system
during walking. Front. Hum. Neurosci. 2017, 11, 314. [CrossRef] [PubMed]
[51] Boettcher, F.A.; Poth, E.A.; Mills, J.H.; Dubno, J.R. The amplitude-modulation following
response in young and aged human subjects. Hear. Res. 2001, 153, 32–42. [CrossRef]
[52] Burton, M.J.; Cohen, L.T.; Rickards, F.W.; McNally, K.I.; Clark, G.M. Steady-state
evoked potentials to amplitude modulated tones in the monkey. Acta Oto-Laryngol. 1992,
112, 745–751. [CrossRef] [PubMed]
[53] Rees, A.; Green, G.G.; Kay, R.H. Steady-state evoked responses to sinusoidally amplitudemodulated
sounds recorded in man. Hear. Res. 1986, 23, 123–133. [CrossRef]
[54] John, M.S.; Dimitrijevic, A.; van Roon, P.; Picton, T.W. Multiple auditory steady-state
responses to AM and FM stimuli. Audiol. Neurotol. 2001, 6, 12–27. [CrossRef]
[55] Kim, S.; Jang, S.-K.; Kim, D.-W.; Shim, M.; Kim, Y.-W.; Im, C.-H.; Lee, S.-H. Cortical
volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and
healthy controls. NeuroImage Clin. 2019, 22, 101732. [CrossRef]
[56] Rass, O.; Krishnan, G.; Brenner, C.A.; Hetrick, W.P.; Merrill, C.C.; Shekhar, A.;
O’Donnell, B.F. Auditory steady state response in bipolar disorder: Relation to clinical
state, cognitive performance, medication status, and substance disorders. Bipolar Disord.
2010, 12, 793–803. [CrossRef]
[57] Vanvooren, S.; Poelmans, H.; Hofmann, M.; Luts, H.; Dandache, S.; Ghesquière, P.;
Wouters, J. Auditory temporal processing in dyslexia: An ASSR study in young children.
Int. J. Psychophysiol. 2012, 85, 358. [CrossRef]
[58] De Siati, R.D.; Rosenzweig, F.; Gersdorff, G.; Gregoire, A.; Rombaux, P.; Deggouj, N.
Auditory neuropathy spectrum disorders: From diagnosis to treatment: Literature review
and case reports. J. Clin. Med. 2020, 9, 1074. [CrossRef]
[59] Ishida, I.M.; Stapells, D.R. Multiple-ASSR Interactions in Adults with Sensorineural
45
Hearing Loss. Int. J. Otolaryngol. 2012, 2012, 802715. [CrossRef] [PubMed]
[60] Van Maanen, A.; Stapells, D.R. Multiple-ASSR thresholds in infants and young children
with hearing loss. J. Am. Acad. Audiol. 2010, 21, 535–545. [CrossRef] [PubMed]
[61] Lins, O.G.; Picton, T.W.; Boucher, B.L.; Durieux-Smith, A.; Champagne, S.C.; Moran,
L.M.; Perez-Abalo, M.C.; Martin, V.; Savio, G. Frequency-specific audiometry using
steady-state responses. Ear Hear. 1996, 17, 81–96. [CrossRef] [PubMed]
[62] Picton, T.W.; Dimitrijevic, A.; Perez-Abalo, M.C.; Van Roon, P. Estimating audiometric
thresholds using auditory steady-state responses. J. Am. Acad. Audiol. 2005, 16, 140–156.
[CrossRef] [PubMed]
[63] Beck, D.L.; Speidel, D.P.; Petrak, M. Auditory steady-state response (ASSR): A
beginner’s guide. Hear. Rev. 2007, 14, 34–37.
[64] Khuwaja, G.A.; Haghighi, S.J.; Hatzinakos, D. 40-Hz ASSR fusion classification system
for observing sleep patterns. EURASIP J. Bioinform. Syst. Biol. 2015, 2015, 2. [CrossRef]
[65] Swanepoel, D.; Hugo, R.; Roode, R. Auditory steady-state responses for children with
severe to profound hearing loss. Arch. Otolaryngol.-Head Neck Surg. 2004, 130, 531–535.
[CrossRef]
[66] Sugiyama, S.; Ohi, K.; Kuramitsu, A.; Takai, K.; Muto, Y.; Taniguchi, T.; Kinukawa, T.;
Takeuchi, N.; Motomura, E.; Nishihara, M. The auditory steady-state response:
Electrophysiological index for sensory processing dysfunction in psychiatric disorders.
Front. Psychiatry 2021, 12, 644541. [CrossRef]
[67] Yokota, Y.; Naruse, Y. Phase coherence of auditory steady-state response reflects the
amount of cognitive workload in a modified N-back task. Neurosci. Res. 2015, 100, 39–
45. [CrossRef]
[68] Kallenberg, M.; Desain, P.; Gielen, S. Auditory selective attention as a method for a brain
computer interface. Nijmegen CNS 2006, 2, 1–16.
[69] Biesmans, W.; Bertrand, A.; Wouters, J.; Moonen, M. Optimal spatial filtering for auditory
46
steady-state response detection using high-density EEG. In Proceedings of the 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), South
Brisbane, QLD, Australia, 19–24 April; IEEE: Piscataway Township, NJ, USA, 2015; pp.
857–861.
[70] Janani, A.S.; Grummett, T.S.; Lewis, T.W.; Fitzgibbon, S.P.; Whitham, E.M.;
DelosAngeles, D.; Bakhshayesh, H.;Willoughby, J.O.; Pope, K.J. Improved artefact
removal from EEG using Canonical Correlation Analysis and spectral slope. J. Neurosci.
Methods 2018, 298, 1–15. [CrossRef] [PubMed]
[71] Wang, K.-W.; Chang, H.-H.; Hsu, C.-C.; Chen, K.-C.; Hsieh, J.-C.; Li, L.P.-H.; Lee, P.-
L.; Shiao, A.-S. Extractions of steady-state auditory evoked fields in normal subjects and
tinnitus patients using complementary ensemble empirical mode decomposition.
BioMedical Eng. OnLine 2015, 14, 1–18. [CrossRef] [PubMed]
[72] Bin, G.; Gao, X.; Yan, Z.; Hong, B.; Gao, S. An online multi-channel SSVEP-based brain–
computer interface using a canonical correlation analysis method. J. Neural Eng. 2009, 6,
046002. [CrossRef]
[73] Huang, N.E.; Hu, K.; Yang, A.C.; Chang, H.-C.; Jia, D.; Liang, W.-K.; Yeh, J.R.; Kao, C.-
L.; Juan, C.-H.; Peng, C.K. On Holo-Hilbert spectral analysis: A full informational spectral
representation for nonlinear and non-stationary data. Philos. Trans. R. Soc. A: Math. Phys.
Eng. Sci. 2016, 374, 20150206. [CrossRef] [PubMed]
[74] Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung,
C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear
and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
1998, 454, 903–995. [CrossRef]
[75] Schlee, W.; Weisz, N.; Bertrand, O.; Hartmann, T.; Elbert, T. Using auditory steady state
responses to outline the functional connectivity in the tinnitus brain. PLoS ONE 2008, 3,
e3720. [CrossRef]
47
[76] Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A user-friendly
application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 2011, 879716.
[CrossRef]
[77] Cointepas, Y.; Mangin, J.-F.; Garnero, L.; Poline, J.-B.; Benali, H. BrainVISA: Software
platform for visualization and analysis of multi-modality brain data. Neuroimage 2001, 13,
98. [CrossRef]
[78] Solomon, O.M., Jr. PSD Computations Using Welch’s Method. [Power Spectral Density
(PSD)]; Sandia National Labs: Albuquerque, NM, USA, 1991.
[79] von Lühmann, A.; Li, X.; Müller, K.-R.; Boas, D.A.; Yücel, M.A. Improved physiological
noise regression in fNIRS: A multimodal extension of the general linear model using
temporally embedded canonical correlation analysis. NeuroImage 2020, 208, 116472.
[CrossRef]
[80] Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding,W.;
Lin, C.-T. A review of clustering techniques and developments. Neurocomputing 2017,
267, 664–681. [CrossRef]
[81] Mosher, J.C.; Leahy, R.M. Recursive MUSIC: A framework for EEG and MEG source
localization. IEEE Trans. Biomed. Eng. 1998, 45, 1342–1354. [CrossRef] [PubMed]
[82] Chang, H.-H.; Hsu, C.-C.; Chen, C.-Y.; Lee, W.-K.; Hsu, H.-T.; Shyu, K.-K.; Yeh, J.-R.;
Lin, P.-J.; Lee, P.-L. A method for respiration rate detection in wrist PPG signal using
Holo-Hilbert spectrum. IEEE Sens. J. 2018, 18, 7560–7569. [CrossRef]
[83] Hsu, H.-T.; Lee, W.-K.; Shyu, K.-K.; Yeh, T.-K.; Chang, C.-Y.; Lee, P.-L. Analyses of
EEG oscillatory activities during slow and fast repetitive movements using Holo-Hilbert
spectral analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1659–1668. [CrossRef]
[PubMed]
[84] Lee, T.-M.; Lee, P.-L.; Lee, I.-H.; Lee, W.-K.; Wu, T.-Y.; Hsu, H.-T.; Yeh, C.-L.; Lin, P.-
J.; Shyu, K.-K. Study of heart-rate variability in a video task using Holo-Hilbert spectral
48
analysis. Biomed. Signal Processing Control. 2022, 71, 103229. [CrossRef]
[85] Griskova-Bulanova, I.; Ruksenas, O.; Dapsys, K.; Maciulis, V.; Arnfred, S.M. Distraction
task rather than focal attention modulates gamma activity associated with auditory steadystate
responses (ASSRs). Clin. Neurophysiol. 2011, 122, 1541–1548. [CrossRef]
[86] Heo, J.; Baek, H.J.; Hong, S.; Chang, M.H.; Lee, J.S.; Park, K.S. Music and natural sounds
in an auditory steady-state response based brain–computer interface to increase user
acceptance. Comput. Biol. Med. 2017, 84, 45–52. [CrossRef]
[87] Vohs, J.L.; Andrew Chambers, R.; Krishnan, G.P.; O’Donnell, B.F.; Berg, S.; Morzorati,
S.L. GABAergic modulation of the 40 Hz auditory steady-state response in a rat model of
schizophrenia. Int. J. Neuropsychopharmacol. 2010, 13, 487–497. [CrossRef]
[88] Wang, Y.; Li, Z.; Tian, Z.; Wang, X.; Li, Y.; Qin, L. Emotional arousal modifies auditory
steady state response in the auditory cortex and prefrontal cortex of rats. Stress 2019, 22,
492–500. [CrossRef]
[89] Anderssen, S.; Nicolaisen, R.; Gabrielsen, G. Autonomic response to auditory stimulation.
Acta Paediatr. 1993, 82, 913–918. [CrossRef]
[90] Dimberg, U. Facial electromyographic reactions and autonomic activity to auditory stimuli.
Biol. Psychol. 1990, 31, 137–147. [CrossRef]
[91] Valenti, V.E.; Guida, H.L.; Frizzo, A.C.; Cardoso, A.C.; Vanderlei, L.C.M.; de Abreu, L.C.
Auditory stimulation and cardiac autonomic regulation. Clinics 2012, 67, 955–958.
[CrossRef]
[92] Drewes, J.; Muschter, E.; Zhu,W.; Melcher, D. Individual resting-state alpha peak
frequency and within-trial changes in alpha peak frequency both predict visual dual-pulse
segregation performance. Cereb. Cortex 2022, 32, bhac026. [CrossRef] [PubMed]
[93] Noda, Y.; Takano, M.; Hayano, M.; Li, X.; Wada, M.; Nakajima, S.; Mimura, M.; Kondo,
S.; Tsubota, K. Photobiological Neuromodulation of Resting-State EEG and Steady-State
Visual-Evoked Potentials by 40 Hz Violet Light Optical Stimulation in Healthy Individuals.
49
J. Pers. Med. 2021, 11, 557. [CrossRef] [PubMed]
[94] Zou, Q.; Long, X.; Zuo, X.; Yan, C.; Zhu, C.; Yang, Y.; Liu, D.; He, Y.; Zang, Y.
Functional connectivity between the thalamus and visual cortex under eyes closed and
eyes open conditions: A resting-state fMRI study. Hum. Brain Mapp. 2009, 30, 3066–
3078. [CrossRef] [PubMed]
指導教授 李柏磊 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明