博碩士論文 109326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.220.144.74
姓名 蔡承桓(Cheng-Huan Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數
(Evaluation of concentration, space velocity, cell pairs and channel thickness for power generation by Reverse Electrodialysis(RED))
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 以反向電透析(RED)系統產電並去除氨氮★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 本研究是目前台灣少數投入於反向電透析(Reverse electrodialysis,RED)之研究,為國內發展新型可再生能源有著重要貢獻,能源議題是國際間重要議題,發展可再生能源替代傳統化石能源以降低二氧化碳(CO2)排放相當重要。藍色能源(blue energy)是存在於海洋之可再生能源,包含波浪、潮汐、鹽差能等,鹽差能是其中能源獲取效率最高者,而RED是用於收集鹽差能最有效的方法,RED原理是利用交錯排列陰陽離子交換膜形成隔室並通入濃、淡鹽水,鹽水因濃度梯度(salinity gradient)形成離子流,經過陰陽極反應後形成電流再經由外部電路收集。根據研究,傳統化石能源碳排放為1,004 g CO2/kWh(燃煤)、543 g CO2/kWh(天然氣),RED收集之鹽差能碳排放為<10 g CO2/kWh,相較之下RED於碳排放減量上具有良好的競爭力。影響RED發電之因素眾多,包含溶液條件(濃度、種類、流速等)、離子交換膜條件、電極系統條件等,本研究主要利用5對10 x 20 cm2之RED系統進行實驗,針對不同RED操作條件,如濃、淡水濃度、流速與離子交換膜對數及流道厚度四項參數進行比較。在維持所有條件下僅提升濃水濃度或降低淡水濃度,對於RED系統之電壓及功率有幫助,但過高之濃水取得有限、過低之淡水導電率下降反而可能導致最終功率下降,經過評估顯示較佳之濃水、淡水濃度應介於1 ~ 2.5 M NaCl、0.02 ~ 0.05 M NaCl,濃度比則應高於50:1;溶液流速快慢會影響離子交換效率及RED系統電阻,其中淡水流速快慢影響較濃水高,在RED系統整體流速增加時,RED發電之功率呈現先下降後上升,在泵能耗納入考量後,以濃、淡水空間流速0.25、0.25 1/min(流量47.5、47.5 mL/min)可以得到較佳之功率密度(0.328 W/m2);離子交換膜對數則影響RED系統之電壓,在未來實際投入實廠之RED系統必須盡可能增加膜對數以獲取更高效率之能源產生;流道厚度則主要影響RED系統之電阻,當厚度達到4 mm,電阻上升至約11 Ω,將大幅降低RED系統之發電效率,然而厚度過小亦可能造成流道製作過程困難,在厚度之設計上應介於1 mm左右。本實驗主要提供了目前國內首個實驗室級RED系統之操作參數建立,以提供後續研究之參考依據。
摘要(英) This research is currently one of a few research in Taiwan that has focused on reverse electrodialysis (RED), which has made an important contribution to the development of renewable energy in Taiwan. Energy issues are important international issues, and the development of renewable energy to replace traditional fossil fuel to reduce carbon dioxide (CO2) emissions are extremely important. Blue energy is a renewable energy that only exists in the ocean, including waves, tides, and salinity gradient power (SGD). Salinity gradient energy is the most efficient energy source among them, and RED is the most effective way to collect energy. The fundamental mechanism of RED is to use staggered anion and cation exchange membranes to form compartments that concentrated and dilute salt water can flow through respectively. The salty water forms an ion flow due to the concentration gradient, a current is formed after the redox reactions, and then collected by an external circuit. According to the previous research, the carbon emission of traditional fossil fuel is 1004 g CO2/kWh for coal and 543 g CO2/kWh for natural gas. On the other hand, the carbon emission of salt gradient energy collected by RED is <10 g CO2/kWh. It has good competitiveness in terms of emission reduction. There are several factors affecting RED power generation, including solution conditions (concentration, type, flow rate, etc.), ion exchange membrane conditions, electrode system conditions, etc. This study mainly uses 5 pairs of 10 x 20 cm2 RED systems to conduct experiments. Various concentrations, space velocity, cell pairs and channel thickness are applied to compare the efficiency of power generation. Evaluation shows that the concentration of concentrated water and dilute water should be between 1 ~ 2.5 M NaCl and 0.02 ~ 0.05 M NaCl, and the concentration ratio should be higher than 50 : 1. The velocity of the solution affects the ion exchange efficiency and the resistance of the RED system. The velocity of the dilute water is higher than that of the concentrated water. When the overall flow rate of the RED system increases, the power of the RED power generation decreases first and then increases. After the pump energy consumption is taken into consideration. The better power density (0.328 W/m2) can be obtained with space velocity of 0.25-0.25 1/min (flow rate of 47.5, 47.5 mL/min). The cell pairs of RED system must be increased as much as possible to obtain more efficient energy generation. The thickness of the channel mainly affects the resistance of the RED system. The thickness design should be around 1 mm. This experiment mainly provides the establishment of the operating parameters of the first laboratory-level RED system in Taiwan, so as to provide a reference for follow-up research.
關鍵字(中) ★ 反向電透析
★ 濃度梯度
★ 可再生能源
★ 碳排放
關鍵字(英) ★ reverse electrodialysis
★ salinity gradient power
★ renewable energy
★ carbon emission
論文目次 摘 要 I
ABSTRACT II
致 謝 IV
目 錄 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 反向電透析 4
2.1.1 反向電透析原理 4
2.1.2 反向電透析公式推導 6
2.1.3 影響RED產電效率之因素 8
2.1.3.1 進料溶液特性 8
2.1.3.2 離子交換膜特性 10
2.1.3.3 電極系統 13
2.1.4 RED實際案例 15
2.1.5 研究應用 16
2.2 溫室效應 18
2.2.1 溫室效應 18
2.2.2 溫室效應潛勢 19
2.2.3 減碳政策 20
2.2.4 各項綠色能源發展近況 21
2.2.5 綠色能源碳排放 28
第三章 研究方法 29
3.1 實驗流程與架構 29
3.2 實驗材料與設備 30
3.2.1 實驗藥品 30
3.2.2 實驗設備 31
3.3 實驗方法 33
3.3.1 濃度影響測試 33
3.3.2 流速影響測試 34
3.3.3 離子交換膜對數影響測試 35
3.3.4 流道厚度影響測試 35
3.4 測試儀器與原理 36
3.4.1 導電度計 36
3.4.2 恆電位儀 37
第四章 結果與討論 39
4.1 濃度影響分析 39
4.1.1 淡水濃度影響 39
4.1.2 濃水濃度影響 41
4.2 流速影響分析 47
4.2.1 淡水流速影響 47
4.2.2 濃水流速影響 49
4.2.3 相同流速比、不同流速影響 51
4.3 離子交換膜對數影響 53
4.4 流道厚度影響 55
4.5 產電效能比較 57
第五章 結論與建議 59
5.1 結 論 59
5.2 建議 61
參考文獻 64

參考文獻 Adamantiades, A., & Kessides, I. (2009). Nuclear power for sustainable development: Current status and future prospects. Energy Policy, 37(12), 5149-5166. https://doi.org/https://doi.org/10.1016/j.enpol.2009.07.052
Al Mashrafi, S., Diaz-Elsayed, N., Benjamin, J., Arias, M. E., & Zhang, Q. (2022). An environmental and economic sustainability assessment of a pressure retarded osmosis system. Desalination, 537, 115869. https://doi.org/https://doi.org/10.1016/j.desal.2022.115869
Avci, A. H., Sarkar, P., Tufa, R. A., Messana, D., Argurio, P., Fontananova, E., Di Profio, G., & Curcio, E. (2016). Effect of Mg2+ ions on energy generation by Reverse Electrodialysis. Journal of Membrane Science, 520, 499-506. https://doi.org/https://doi.org/10.1016/j.memsci.2016.08.007
Bayazıt, Y. (2021). The effect of hydroelectric power plants on the carbon emission: An example of Gokcekaya dam, Turkey. Renewable Energy, 170, 181-187. https://doi.org/https://doi.org/10.1016/j.renene.2021.01.130
Brandon, N. P., Skinner, S., & Steele, B. C. H. (2003). Recent Advances in Materials for Fuel Cells. Annual Review of Materials Research, 33(1), 183-213. https://doi.org/10.1146/annurev.matsci.33.022802.094122
Cazzaniga, R., Rosa-Clot, M., Rosa-Clot, P., & Tina, G. M. (2019). Integration of PV floating with hydroelectric power plants. Heliyon, 5(6), e01918. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01918
Çetin, G., Özkaraca, O., & Keçebaş, A. (2021). Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant. Renewable and Sustainable Energy Reviews, 137, 110623. https://doi.org/https://doi.org/10.1016/j.rser.2020.110623
Chae, S. H., Kim, Y. M., Park, H., Seo, J., Lim, S. J., & Kim, J. H. (2019). Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes. Energies, 12(2).
Chen, X., Jiang, C., Zhang, Y., Wang, Y., & Xu, T. (2017). Storable hydrogen production by Reverse Electro-Electrodialysis (REED). Journal of Membrane Science, 544, 397-405. https://doi.org/https://doi.org/10.1016/j.memsci.2017.09.006
Cho, D. H., Lee, K. H., Kim, Y. M., Park, S. H., Lee, W. H., Lee, S. M., & Lee, Y. M. (2017). Effect of cationic groups in poly(arylene ether sulfone) membranes on reverse electrodialysis performance. Chem Commun (Camb), 53(15), 2323-2326. https://doi.org/10.1039/c6cc08440k
Choi, J., Oh, Y., Chae, S., & Hong, S. (2019). Membrane capacitive deionization-reverse electrodialysis hybrid system for improving energy efficiency of reverse osmosis seawater desalination. Desalination, 462, 19-28. https://doi.org/https://doi.org/10.1016/j.desal.2019.04.003
Daniilidis, A., Herber, R., & Vermaas, D. A. (2014). Upscale potential and financial feasibility of a reverse electrodialysis power plant. Applied Energy, 119, 257-265. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.12.066
Długołęcki, P., Ogonowski, P., Metz, S. J., Saakes, M., Nijmeijer, K., & Wessling, M. (2010). On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1), 369-379. https://doi.org/https://doi.org/10.1016/j.memsci.2009.11.069
Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4), 2154-2171. https://doi.org/https://doi.org/10.1016/j.rser.2012.01.029
Ferguson, M. A., & Branscombe, N. R. (2010). Collective guilt mediates the effect of beliefs about global warming on willingness to engage in mitigation behavior. Journal of Environmental Psychology, 30(2), 135-142.
Güler, E., Elizen, R., Vermaas, D. A., Saakes, M., & Nijmeijer, K. (2013). Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 446, 266-276. https://doi.org/https://doi.org/10.1016/j.memsci.2013.06.045
Gao, X., & Kroeze, C. (2012). The effects of blue energy on future emissions of greenhouse gases and other atmospheric pollutants in China. Journal of Integrative Environmental Sciences, 9(sup1), 177-190.
Geise, G. M., Cassady, H. J., Paul, D. R., Logan, B. E., & Hickner, M. A. (2014). Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys Chem Chem Phys, 16(39), 21673-21681. https://doi.org/10.1039/c4cp03076a
Guler, E., Zhang, Y.-l., Saakes, M., & Nijmeijer, K. (2012). Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem, 5 11, 2262-2270.
Guo, X., Lin, K., Huang, H., & Li, Y. (2019). Carbon footprint of the photovoltaic power supply chain in China. Journal of Cleaner Production, 233, 626-633. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.102
Han, J.-H., Jeong, H., Hwang, K. S., Kim, C.-S., Jeong, N., & Yang, S. (2020). Asymmetrical electrode system for stable operation of a large-scale reverse electrodialysis (RED) system. Environmental Science: Water Research & Technology, 6(6), 1597-1605. https://doi.org/10.1039/d0ew00001a
Hatzell, M. C., Zhu, X., & Logan, B. E. (2014). Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System. ACS sustainable chemistry & engineering, 2(9), 2211-2216. https://doi.org/10.1021/sc5004133
Helfer, F., Lemckert, C., & Anissimov, Y. G. (2014). Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review. Journal of Membrane Science, 453, 337-358. https://doi.org/https://doi.org/10.1016/j.memsci.2013.10.053
Herman, H., Slade, R. C. T., & Varcoe, J. R. (2003). The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation. Journal of Membrane Science, 218(1), 147-163. https://doi.org/https://doi.org/10.1016/S0376-7388(03)00167-4
Hibbs, M. R., Fujimoto, C. H., & Cornelius, C. J. (2009). Synthesis and characterization of poly (phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules, 42(21), 8316-8321.
Hidayat, S., Song, Y. H., & Park, J. Y. (2017). Performance of a continuous flow microbial reverse-electrodialysis electrolysis cell using a non-buffered substrate and catholyte effluent addition. Bioresour Technol, 240, 77-83. https://doi.org/10.1016/j.biortech.2017.03.004
Hong, J. G., & Chen, Y. (2014). Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation. Journal of Membrane Science, 460, 139-147. https://doi.org/https://doi.org/10.1016/j.memsci.2014.02.027
Jang, J., Kang, Y., Han, J.-H., Jang, K., Kim, C.-M., & Kim, I. S. (2020). Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 491, 114540. https://doi.org/https://doi.org/10.1016/j.desal.2020.114540
Kang, B., Kim, H. J., & Kim, D.-K. (2018). Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis. Journal of Membrane Science, 550, 286-295. https://doi.org/https://doi.org/10.1016/j.memsci.2018.01.006
Kim, J.-H., Lee, J.-H., Maurya, S., Shin, S.-H., Lee, J.-Y., Chang, I. S., & Moon, S.-H. (2016). Proof-of-concept experiments of an acid-base junction flow battery by reverse bipolar electrodialysis for an energy conversion system. Electrochemistry Communications, 72, 157-161. https://doi.org/https://doi.org/10.1016/j.elecom.2016.09.025
Kim, Y., & Logan, B. E. (2011). Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production. Environmental Science & Technology, 45(13), 5834-5839. https://doi.org/10.1021/es200979b
Li, J., Li, S., & Wu, F. (2020). Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renewable Energy, 155, 456-468. https://doi.org/https://doi.org/10.1016/j.renene.2020.03.133
Li, W., Krantz, W. B., Cornelissen, E. R., Post, J. W., Verliefde, A. R. D., & Tang, C. Y. (2013). A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 104, 592-602. https://doi.org/https://doi.org/10.1016/j.apenergy.2012.11.064
Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488(7411), 313-319. https://doi.org/10.1038/nature11477
Luo, X., Nam, J. Y., Zhang, F., Zhang, X., Liang, P., Huang, X., & Logan, B. E. (2013). Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresour Technol, 140, 399-405. https://doi.org/10.1016/j.biortech.2013.04.097
Lyman, J., & Fleming, R. H. (1940). Composition of sea water. J. mar. Res, 3(2), 134-146.
Mei, Y., & Tang, C. Y. (2017). Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications. Journal of Membrane Science, 539, 305-312. https://doi.org/https://doi.org/10.1016/j.memsci.2017.06.014
Miró, L., Brückner, S., & Cabeza, L. F. (2015). Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renewable and Sustainable Energy Reviews, 51, 847-855. https://doi.org/https://doi.org/10.1016/j.rser.2015.06.035
Mora, D. A. a., & de Rijck, A. (2015). Blue energy: salinity gradient power in practice. Global Sustainable Development Report; United Nations: New York, NY, USA.
Moreno, J., de Hart, N., Saakes, M., & Nijmeijer, K. (2017). CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis. Water Research, 125, 23-31. https://doi.org/https://doi.org/10.1016/j.watres.2017.08.015
Moya, A. A. (2020). Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A Nernst-Planck based study. Journal of Membrane Science, 598, 117784. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117784
Mueller, K. E., Thomas, J. T., Johnson, J. X., DeCarolis, J. F., & Call, D. F. (2021). Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis. Journal of Industrial Ecology, 25(5), 1194-1206.
Nam, J.-Y., Hwang, K.-S., Kim, H.-C., Jeong, H., Kim, H., Jwa, E., Yang, S., Choi, J., Kim, C.-S., Han, J.-H., & Jeong, N. (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148, 261-271. https://doi.org/https://doi.org/10.1016/j.watres.2018.10.054
Neumann, F. (2014). Personal Communication about different types of present SGP pilots/research globally by David Acuña Mora and Arvid de Rijck. In. Wageningen.
O′Sullivan, M., Gravatt, M., Popineau, J., O′Sullivan, J., Mannington, W., & McDowell, J. (2021). Carbon dioxide emissions from geothermal power plants. Renewable Energy, 175, 990-1000. https://doi.org/https://doi.org/10.1016/j.renene.2021.05.021
Post, J. W. (2014). Personal Communication about the RED type of Blue Energy and its other possible applications by David Acuña Mora and Arvid de Rijck. In. Amersfoort.
Post, J. W., Hamelers, H. V. M., & Buisman, C. J. N. (2008). Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System. Environmental Science & Technology, 42(15), 5785-5790. https://doi.org/10.1021/es8004317
Post, J. W., Hamelers, H. V. M., & Buisman, C. J. N. (2009). Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. Journal of Membrane Science, 330(1), 65-72. https://doi.org/https://doi.org/10.1016/j.memsci.2008.12.042
Raka, Y. D., Karoliussen, H., Lien, K. M., & Burheim, O. S. (2020). Opportunities and challenges for thermally driven hydrogen production using reverse electrodialysis system. International Journal of Hydrogen Energy, 45(2), 1212-1225. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.05.126
Saito, K., Saito, K., Sugita, K., Tamada, M., & Sugo, T. (2002). Convection-aided collection of metal ions using chelating porous flat-sheet membranes. J Chromatogr A, 954(1-2), 277-283. https://doi.org/10.1016/s0021-9673(02)00163-2
Santoro, S., Tufa, R. A., Avci, A. H., Fontananova, E., Di Profio, G., & Curcio, E. (2021). Fouling propensity in reverse electrodialysis operated with hypersaline brine. Energy, 228, 120563. https://doi.org/https://doi.org/10.1016/j.energy.2021.120563
Sata, T. (2007). Ion exchange membranes: preparation, characterization, modification and application. Royal Society of chemistry.
Scialdone, O., Albanese, A., D’Angelo, A., Galia, A., & Guarisco, C. (2013). Investigation of electrode material – redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs. Journal of Electroanalytical Chemistry, 704, 1-9. https://doi.org/https://doi.org/10.1016/j.jelechem.2013.06.001
Scialdone, O., Guarisco, C., Grispo, S., Angelo, A. D., & Galia, A. (2012). Investigation of electrode material – Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples. Journal of Electroanalytical Chemistry, 681, 66-75. https://doi.org/https://doi.org/10.1016/j.jelechem.2012.05.017
Sharma, H., & Singh, J. (2013). Run off river plant: status and prospects. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 3(2), 2278-3075.
Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281-302.
Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192-203. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.053
Simões, C., Pintossi, D., Saakes, M., & Brilman, W. (2021). Optimizing multistage reverse electrodialysis for enhanced energy recovery from river water and seawater: Experimental and modeling investigation. Advances in Applied Energy, 2, 100023. https://doi.org/https://doi.org/10.1016/j.adapen.2021.100023
Simões, C., Pintossi, D., Saakes, M., Borneman, Z., Brilman, W., & Nijmeijer, K. (2020). Electrode segmentation in reverse electrodialysis: Improved power and energy efficiency. Desalination, 492, 114604. https://doi.org/https://doi.org/10.1016/j.desal.2020.114604
Sims, R. E. H., Rogner, H.-H., & Gregory, K. (2003). Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy, 31(13), 1315-1326. https://doi.org/https://doi.org/10.1016/S0301-4215(02)00192-1
Singh, V. K., & Singal, S. K. (2017). Operation of hydro power plants-a review. Renewable and Sustainable Energy Reviews, 69, 610-619. https://doi.org/https://doi.org/10.1016/j.rser.2016.11.169
Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459-497. https://doi.org/https://doi.org/10.1016/j.enconman.2017.11.019
Song, Y.-H., Hidayat, S., Effendi, A. J., & Park, J.-Y. (2021). Simultaneous hydrogen production and struvite recovery within a microbial reverse-electrodialysis electrolysis cell. Journal of Industrial and Engineering Chemistry, 94, 302-308. https://doi.org/https://doi.org/10.1016/j.jiec.2020.10.043
Tedesco, M., Cipollina, A., Tamburini, A., Bogle, I. D. L., & Micale, G. (2015). A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chemical Engineering Research and Design, 93, 441-456. https://doi.org/https://doi.org/10.1016/j.cherd.2014.05.009
Tedesco, M., Cipollina, A., Tamburini, A., & Micale, G. (2017). Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. Journal of Membrane Science, 522, 226-236. https://doi.org/https://doi.org/10.1016/j.memsci.2016.09.015
Tedesco, M., Scalici, C., Vaccari, D., Cipollina, A., Tamburini, A., & Micale, G. (2016). Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. Journal of Membrane Science, 500, 33-45. https://doi.org/https://doi.org/10.1016/j.memsci.2015.10.057
Tristán, C., Rumayor, M., Dominguez-Ramos, A., Fallanza, M., Ibáñez, R., & Ortiz, I. (2020). Life cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plant. Sustainable Energy & Fuels, 4(8), 4273-4284.
Tufa, R. A., Rugiero, E., Chanda, D., Hnàt, J., van Baak, W., Veerman, J., Fontananova, E., Di Profio, G., Drioli, E., Bouzek, K., & Curcio, E. (2016). Salinity gradient power-reverse electrodialysis and alkaline polymer electrolyte water electrolysis for hydrogen production. Journal of Membrane Science, 514, 155-164. https://doi.org/https://doi.org/10.1016/j.memsci.2016.04.067
Vargas, S. A., Esteves, G. R. T., Maçaira, P. M., Bastos, B. Q., Cyrino Oliveira, F. L., & Souza, R. C. (2019). Wind power generation: A review and a research agenda. Journal of Cleaner Production, 218, 850-870. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.02.015
Vaselbehagh, M., Karkhanechi, H., Takagi, R., & Matsuyama, H. (2017). Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process. Journal of Membrane Science, 530, 232-239. https://doi.org/https://doi.org/10.1016/j.memsci.2017.02.036
Veerman, J., Saakes, M., Metz, S. J., & Harmsen, G. J. (2010). Reverse electrodialysis: evaluation of suitable electrode systems. Journal of Applied Electrochemistry, 40(8), 1461-1474. https://doi.org/10.1007/s10800-010-0124-8
Vermaas, D. A. (2014). Energy generation from mixing salt water and fresh water: smart flow strategies for reverse electrodialysis.
Vermaas, D. A., Saakes, M., & Nijmeijer, K. (2011). Doubled power density from salinity gradients at reduced intermembrane distance. Environ Sci Technol, 45(16), 7089-7095. https://doi.org/10.1021/es2012758
Vermaas, D. A., Veerman, J., Yip, N. Y., Elimelech, M., Saakes, M., & Nijmeijer, K. (2013). High efficiency in energy generation from salinity gradients with reverse electrodialysis. ACS sustainable chemistry & engineering, 1(10), 1295-1302.
Vinodh, R., Ilakkiya, A., Elamathi, S., & Sangeetha, D. (2010). A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization. Materials Science and Engineering: B, 167(1), 43-50. https://doi.org/https://doi.org/10.1016/j.mseb.2010.01.025
Wiedmann, T., & Minx, J. (2008). A definition of ‘carbon footprint’. Ecological economics research trends, 1(2008), 1-11.
Xu, T. (2005). Ion exchange membranes: State of their development and perspective. Journal of Membrane Science, 263(1), 1-29. https://doi.org/https://doi.org/10.1016/j.memsci.2005.05.002
Xu, T., Yang, W. h., & He, B. (2002). Effect of solvent composition on the sulfonation degree of poly(phenylene oxide) (PPO). Chinese Journal of Polymer Science, 20, 53-57.
Yang, K., Li, X., Guo, J., Zheng, J., Li, S., Zhang, S., Cao, X., Sherazi, T. A., & Liu, X. (2020). Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups. Journal of Membrane Science, 596, 117720. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117720
Yip, N. Y., & Elimelech, M. (2012). Thermodynamic and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis. Environmental Science & Technology, 46(9), 5230-5239. https://doi.org/10.1021/es300060m
Yip, N. Y., Vermaas, D. A., Nijmeijer, K., & Elimelech, M. (2014). Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ Sci Technol, 48(9), 4925-4936. https://doi.org/10.1021/es5005413
Zhang, Y., Wu, X., Xu, S., Leng, Q., & Wang, S. (2022). A serial system of multi-stage reverse electrodialysis stacks for hydrogen production. Energy Conversion and Management, 251, 114932. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114932
Zhou, Y., Zhao, K., Hu, C., Liu, H., Wang, Y., & Qu, J. (2018). Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. Electrochimica Acta, 269, 128-135. https://doi.org/https://doi.org/10.1016/j.electacta.2018.02.136
Zhu, X., He, W., & Logan, B. E. (2015). Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science, 486, 215-221. https://doi.org/https://doi.org/10.1016/j.memsci.2015.03.035
Zhu, X., Kim, T., Rahimi, M., Gorski, C. A., & Logan, B. E. (2017). Integrating Reverse‐Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage. ChemSusChem, 10(4), 797-803.

指導教授 林伯勳(Po-Hsun Lin) 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明