博碩士論文 109326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.22.241.220
姓名 陳詮豐(Cyuan-Fong Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生物除氮程序(MLE Process)效能評估及污泥活性探討
(Evaluation of Biological Nitrogen Removal Process (MLE Process) and Sludge Activity)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
★ 超音波水解生物污泥機制探討★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討
★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-19以後開放)
摘要(中) 當過量的含氮污染物排放至環境時,會使承受水體氮負荷過高進而發生優養化現象,同時造成人體健康危害。隨著公共污水處理廠操作技術成熟及社會環保意識逐漸抬頭,放流水管制水質項目從原先傳統有機污染物到諸如氨氮及總氮等其他營養物質有更加嚴格要求。由於氨氮與總氮污染特性及水量之因素,於公共污水處理技術上仍是以利用生物處理程序為主,並仰賴加大曝氣量、額外碳源之添加及加大硝化液迴流方式以達到放流水水質標準,形成對於資源及能源之浪費,為目前仍待解決之重要課題。
由於營建署「公共污水處理廠設計與解說」中MLE程序設計參數於我國本土水質使用上其適用範圍有待確認,故本研究選定MLE程序以桃園北區水資源中心實廠生活污水進行模型廠試驗,探討其設計參數之合理性及彈性操作空間,同時比較在不同硝化液迴流比條件下其脫硝效果,建立適合本土水質特性之MLE程序最佳操作數據。
研究結果顯示,當生物系統有機負荷F/MBOD = 0.3 kg BOD/kg MLSS‧day條件下,相較於其他階段其各項水質去除率有明顯下降趨勢,不利於實廠上的應用。比較ASRT為15天及20天之操作成果,發現ASRT 20天呈現較佳的總氮去除率,且分析ASRT vs. MLSS操作參數關聯性,當ASRT提升至20天,操作範圍與其他操作參數可以有更加的交互關聯性,建議污水處理廠設計與解說MLE程序ASRT設計值由11~15天調整為11~20天,符合實廠操作層面之彈性。
在硝化液迴流比對於氮污染物去除率影響可知,在操作條件皆相同下,R = 2時系統可達最高的總氮去除率達74%,與理論最大總氮去除率相當,出流水濃度低於10 mg/L足以滿足未來新設公共污水廠總氮排放標準;當R = 1時出流水總氮濃度約為20.2 mg/L,達到未來既設公共污水廠總氮排放標準;當R = 0.5時發現其氨氮硝化效果降低為70%,進而總氮去除率與其它操作條件相比為最低,建議硝化液迴流比應操作在1以上以確保氨氮能有效進行硝化反應。
摘要(英) When excessive nitrogen-containing pollutants are discharged into the environment, it may increase the nitrogen loading of the receiving water body, but also cause eutrophication, and affect human health hazards at the same time. In addition, the government attaches great importance to environmental protection regulations and the maturity of the operation technology of public sewage treatment plants. The discharge water quality control requirements from the original traditional organic pollutants to other nutrients such as ammonia nitrogen and total nitrogen.
Due to the characteristics of ammonia nitrogen and total nitrogen pollution factors, biological treatment procedures are the most common strategy in the public sewage treatment technology. It relies on increasing the amount of aeration, adding additional carbon sources and increasing the return of nitrifying liquid to achieve The water quality standard of the effluent causes a waste of resources and energy, which is an important issue that still needs to be resolved.

According to Construction and Planning Agency Ministry of the Interior "Design and Interpretation of Public Sewage Treatment Plants". The scope of MLE process design parameters that suitable for domestic water quality in Taiwan still need to be comfirm.MLE process was selected in this study to by conducting a model plant test using the domestic sewage of the Taoyuan North District Water Resources Center. , explore the rationality and elastic space of its design parameters, and compare the denitrification effects under different inrenal ratios of nitrification liquid, and establish the best operating data of the MLE program suitable for local water quality characteristics.

In Stage 1, when the biological system operating in F/MBOD = 0.3 kg BOD/kg MLSS‧day compared with other stages, the removal rate of each water quality has a clear downward trend, so it is not conducive to the actual plant Applications. When the ASRT is 15 days and 20 days and other planning operating conditions are the same, it is found that ASRT = 20 days presents a better total nitrogen removal rate, but also shown more interactively correlated with other operating parameters in the ASRT vs. MLSS operating parameter correlation analysis diagram. It is recommended that the ASRT design value of the MLE program for the design and interpretation of sewage treatment plants should be relaxed from 11~15 days to 11~20 days.

The influence of the reflux ratio of the nitrifying liquid on the removal rate of nitrogen pollutants can be shown when R = 2 the system can achieve the highest total nitrogen removal rate of 74%, which is equal to the theoretical maximum total nitrogen removal rate. The concentration is sufficient to meet the total nitrogen discharge standard of the new public sewage plant in the future ; when R = 1, the total nitrogen concentration of the effluent is about 20.2 mg/L, which meets the total nitrogen discharge standard of the existing public sewage plant in the future; when R = 0.5, the ammonia nitrogen nitrification is found The effect is reduced to 70% and the total nitrogen removal rate is the lowest compared with other stages within the recommended operating range of more than 90%. It is recommended that the reflux ratio of the nitrifying liquid should be operated above 1 to ensure that the ammonia nitrogen can effectively carry out the nitrification reaction.
關鍵字(中) ★ 生物脫硝
★ MLE程序
★ 污泥活性
關鍵字(英) ★ Denitrification
★ MLE process
★ Sludge activity
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
一、前言 1
1.1 研究緣起 1
1.2 研究內容與目的 3
二、 文獻回顧 4
2.1 生物硝化脫硝反應原理 4
2.1.1硝化作用 4
2.1.2脫硝作用 6
2.1.3生物硝化脫硝模式 9
2.2 MLE程序發展、國內外應用現況 11
2.2.1 MLE程序發展 11
2.2.2 MLE程序國內外應用現況 14
2.3 MLE程序設計 16
2.3.1 MLE程序設計流程 16
2.3.2設計μAOB污泥停留時間 21
2.3.3選擇安全係數 21
2.3.4初設NO3--Neff 21
2.3.5系統質量平衡 21
2.3.6計算系統微生物產量PX,bio,VSS 24
2.3.7計算實際出流水NO3--N濃度並確認與假設值是否相符 24
2.3.8選擇MLSS設計值計算好氧槽槽體體積F/Maer、HRT與BOD負荷 25
2.3.9計算缺氧槽脫硝菌濃度Sden 25
2.3.10選擇缺氧槽體積比值 25
2.3.11選擇缺氧槽體積比值並計算理論SDNR 26
2.3.12計算總SDNR並檢查總SDNR是否足夠 27
2.4 MLE程序操作影響因子及技術特性 28
2.4.1硝化作用影響參數 28
2.4.2 脫硝作用影響參數 31
2.4.3 MLE程序技術特性 33
2.5 污泥活性指標 37
2.5.1污泥比攝氧率試驗SOUR 37
2.5.2污泥比脫硝率試驗SDNR 39
三、研究方法 41
3.1 研究架構 41
3.2 模型廠污泥馴養、操作參數 43
3.2.1 MLE程序污泥馴養 43
3.2.3 MLE程序操作 45
3.3 模型廠污泥活性試驗 47
3.3.1污泥比脫硝速率試驗SDNR 47
3.3.2污泥活性試驗SOUR 50
3.4 實驗材料、設備及分析方法 52
3.4.1模型廠設計組裝 52
3.5 分析方法 60
四、結果與討論 61
4.1 長期進流水水質特性 61
4.2 MLE程序各階段操作成果 65
4.2.1階段一操作成果 67
4.2.2階段二操作成果 75
4.2.3階段三操作成果 83
4.2.4階段四操作成果 91
4.2.5階段五操作成果 99
4.3 MLE程序操作成果綜合分析 107
4.3.1 F/M比值對於系統的影響 109
4.3.2 ASRT對於氮污染物去除成效的影響 110
4.3.3 硝化液迴流比(R)對於氮污染物去除成效的影響 111
4.4 污泥活性試驗結果 114
4.4.1污泥比攝氧率試驗–SOUR 114
4.4.2污泥比脫硝率試驗SDNR 122
4.5 MLE程序設計參數分析 125
4.5.1 MLE程序核心設計參數 125
5.1結論 130
5.2建議 131
參考文獻 132
參考文獻 Aakra, A., Utåker, J., Pommerening-Röser, A., Koops, H.-P., & Nes, I. F. (2001). Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2021-2030.
Barker, P., & Dold, P. (1997). General model for biological nutrient removal activated‐sludge systems: model presentation. Water Environment Research, 69(5), 969-984.
Bishop, D. F., Heidman, J. A., & Stamberg, J. B. (1976). Single-stage nitrification-denitrification. Journal (Water Pollution Control Federation), 520-532.
Carucci, A., Ramadori, R., Rossetti, S., & Tomei, M. (1996). Kinetics of denitrification reactions in single sludge systems. Water research, 30(1), 51-56.
Charpentier, J., Florentz, M., & David, G. (1987). Oxidation-reduction potential (ORP) regulation: a way to optimize pollution removal and energy savings in the low load activated sludge process. Water Science and Technology, 19(3-4), 645-655.
Cherchi, C., Onnis‐Hayden, A., El‐Shawabkeh, I., & Gu, A. Z. (2009). Implication of using different carbon sources for denitrification in wastewater treatments. Water Environment Research, 81(8), 788-799.
Ciudad, G., Werner, A., Bornhardt, C., Muñoz, C., & Antileo, C. (2006). Differential kinetics of ammonia-and nitrite-oxidizing bacteria: a simple kinetic study based on oxygen affinity and proton release during nitrification. Process Biochemistry, 41(8), 1764-1772.
Elefsiniotis, P., & Li, D. (2006). The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 28(2), 148-155.
Fan, J., Tao, T., Zhang, J., & You, G.-l. (2009). Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater. Desalination, 249(2), 822-827.
Fillos, J., Katehis, D., Ramalingam, K., Carrio, L., & Gopalakrishnan, K. (2000). Determination of nitrifier growth rates in NYC water pollution control plants. WEFTEC 2000,
Fuerhacker, M., Bauer, H., Ellinger, R., Sree, U., Schmid, H., Zibuschka, F., & Puxbaum, H. (2000). Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors. Water research, 34(9), 2499-2506.
Haas, C. N. (1979). Oxygen uptake rate as an activated sludge control parameter. Journal (Water Pollution Control Federation), 938-943.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., & Marais, G. (1995). Wastewater and biomass characterization for the activated sludge model no. 2: biological phosphorus removal. Water Science and Technology, 31(2), 13-23.
Könneke, M., Bernhard, A. E., de La Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.
Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S., & van Loosdrecht, M. C. (2009). Nitrous oxide emission during wastewater treatment. Water research, 43(17), 4093-4103.
Komorowska-Kaufman, M., Majcherek, H., & Klaczyński, E. (2006). Factors affecting the biological nitrogen removal from wastewater. Process Biochemistry, 41(5), 1015-1021.
Koops, H.-P., & Pommerening-Röser, A. (2001). Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology ecology, 37(1), 1-9.
Ludzack, F., & Ettinger, M. (1962). Controlling operation to minimize activated sludge effluent nitrogen. Journal (Water Pollution Control Federation), 920-931.
Madoni, P., Davoli, D., & Guglielmi, L. (1999). Response of SOUR and AUR to heavy metal contamination in activated sludge. Water research, 33(10), 2459-2464.
Malovanyy, M., Shandrovych, V., Malovanyy, A., & Polyuzhyn, I. (2016). Comparative analysis of the effectiveness of regulation of aeration depending on the quantitative characteristics of treated sewage water. Journal of Chemistry, 2016.
Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (1991). Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill New York.
Molinos-Senante, M., Hernández-Sancho, F., & Sala-Garrido, R. (2010). Economic feasibility study for wastewater treatment: A cost–benefit analysis. Science of the Total Environment, 408(20), 4396-4402.
Monod, J. (1949). The growth of bacterial cultures. Annual review of microbiology, 3(1), 371-394.
Nowak, O., & Svardal, K. (1993). Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds. Water Science and Technology, 28(2), 115-123.
Panswad, T., & Anan, C. (1999). Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater. Bioresource Technology, 70(3), 237-243.
Park, H.-D., Wells, G. F., Bae, H., Criddle, C. S., & Francis, C. A. (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and environmental microbiology, 72(8), 5643-5647.
Parker, D. S. (1975). Process Design Manual for Nitrogen Control.
Sawyer, C. N., & Bradney, L. (1945). Rising of activated sludge in final settling tanks. sewage works journal, 17(6), 1191-1209.
Shen, J., He, R., Han, W., Sun, X., Li, J., & Wang, L. (2009). Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials, 172(2-3), 595-600.
Stenstrom, M. K., & Poduska, R. A. (1980). The effect of dissolved oxygen concentration on nitrification. Water research, 14(6), 643-649.
Surmacz-Gorska, J., Gernaey, K., Demuynck, C., Vanrolleghem, P., & Verstraete, W. (1996). Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water research, 30(5), 1228-1236.
Thörn, M., & Sörensson, F. (1996). Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water research, 30(6), 1543-1547.
U.S. EPA,1993. Retrieved from http://www.epa.state.il.us/public-notices/2004/lincoln-trails-mhp/draft-permit.pdf.
Vijaranakul, U., Nadakavukaren, M. J., Bayles, D. O., Wilkinson, B. J., & Jayaswal, R. K. (1997). Characterization of an NaCl-sensitive Staphylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes. Applied and environmental microbiology, 63(5), 1889-1897.
Wang, Y. Y., Zhang, Z. X., Yan, M., Gao, N. Y., Yang, J., & Ren, M. H. (2010). Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST). Journal of Environmental Science and Health, Part A, 45(3), 370-376.
Wild Jr, H. E., Sawyer, C. N., & McMahon, T. C. (1971). Factors affecting nitrification kinetics. Journal (Water Pollution Control Federation), 1845-1854.
Wuhrmann, K. (1964). Nitrogen removal in sewage treatment processes: With 9 figures in the text and on 2 folders. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 15(2), 580-596.
Zhao, H. W., Mavinic, D. S., Oldham, W. K., & Koch, F. A. (1999). Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water research, 33(4), 961-970.
內政部營建署污水處理廠設計與解說. 污水處理廠設計與解說.
張聖雄, 陳見財, & 陳良棟. (2006). 廢水生物處理程序常見問題實務探討. In: 工業污染防治.
指導教授 莊順興(Shun-Hsing Chuang) 審核日期 2023-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明