博碩士論文 105382002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.137.186.99
姓名 黃敏彥(Min-Yen Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 維生管線回填CLSM材料之 配比設計與鋪面結構分析
(The Mix Design and Pavement Structural Analysis of Using CLSM for Lifeline Backfill)
相關論文
★ 市區道路養護發包策略-以桃園市為例★ 建築資訊模型應用於維生管線管理之研究
★ 3D管線資料圖資應用於道路工程-以桃園市為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣地區多數管線皆埋設於道路鋪面下方,且五大維生管線為民生重要管線,管線於地底下的狀況又交錯複雜,為維護既有管線及新設管線,常針對鋪面進行反覆開挖及回填,進而影響道路鋪面服務,也造成道路主管機關維護鋪面及管理上之困難,因此,了解管線挖埋工程對鋪面服務之影響為一重要課題。
考量目前國內尚未有一套CLSM之配比設計規定,另外針對暫修復面層養護後重新刨鋪之時間及厚度亦無確切之規定,常有品質不穩定、過度設計或設計強度不足之疑慮。因此,本研究首先參考ACI-211、ACI-229及施工綱要規範,並考量季節影響情況下依據規範調整為適合國內之CLSM配比設計流程,接著以有限元素法進行管線挖掘鋪面結構分析,分析管線挖掘回填後對路面造成之影響,探討路面結構之力學行為。後續依據研擬之配比流程實際進行管線挖掘之現地試鋪,並針對現地試鋪之面層及CLSM進行相關成效試驗,以驗證本研究調整之配比設計流程及結構分析之合理性。
本研究探討參數包含CLSM參數及管埋深度,利用有限元素分析,了解在不同參數下對暫修復面層之影響,以分析CLSM於暫修復期間強度之發展狀況,及最佳管埋深度等,由結構分析可知CLSM於暫修復養護4天後強度可達穩定狀況;另於現地試鋪中針對CLSM進行暫修復4天後之Clegg衝擊試驗,其結果可達施工綱要規範底層強度CBR大於80%之規定。由前述結構分析及現地試鋪結果可知管線挖掘以CLSM回填應可於暫修復養護4天後進行面層全面刨鋪作業。
另外亦進行不同面層刨鋪厚度之結構分析,分析較常見之刨鋪厚度10公分及20公分可承受之交通量ESALs值,由結構分析可知面層20公分可承受交通量ESALs值大約為10公分之3~4倍;另於現地試鋪中針對面層10公分及面層20公分之斷面進行輕型撓度儀試驗(LWD)試驗,由試驗成果可知AC面層20公分之強度約為10公分之3倍,驗證前述結構分析之合理性。
最後探討現地試鋪之成效試驗結果,由成果可知本研究所建立之CLSM配比設計流程可符合相關規範之要求,亦驗證結構分析之成果,因此本研究最後進行CLSM相關規範探討,希冀藉由本研究成果改善國內CLSM之施工及設計品質。
摘要(英) In Taiwan, most pipelines are buried under the road pavement, and the five vital pipelines are important for people′s livelihood. The underground condition of the pipelines is staggered and complicated. To maintain the existing pipelines and new pipelines, repeated excavation and backfilling are often carried out on the pavement, thus affecting the road pavement service and causing difficulties for the road authorities to maintain and manage the pavement. It is an important subject to understand the influence of pipeline excavation engineering on pavement service.
Considering that there is no set of matching design regulations for CLSM in China at present, in addition, there is no exact regulation on the time and thickness of resurfacing after temporary repair, which is often suspected of unstable quality, excessive design, or insufficient design strength. Therefore, this study first referred to ACI-211, ACI-229, and construction specifications, and adjusted the CLSM ratio design process suitable for domestic by the regulations under the consideration of seasonal influences. Then, the finite element method was used to analyze the pavement structure of pipeline excavation, analyze the influence of pipeline backfilling on the pavement, and discuss the mechanical behavior of pavement structure. Subsequently, in-situ test laying of pipeline excavation was carried out according to the proposed matching process, and relevant effectiveness tests were carried out on the surface layer and CLSM of the testing process, to verify the rationality of the matching design process and structural analysis adjusted in this study.
In this study, parameters including CLSM parameters and tube depth were discussed. Finite element analysis was used to understand the influence of different parameters on the surface layer of temporary repair, to analyze the strength development of CLSM during the temporary repair period, and to the optimal tube depth. The structural analysis showed that the strength of CLSM could reach a stable state after 4 days of temporary repair and maintenance. In addition, the Clegg impact test was carried out on CLSM for 4 days after temporary repair in the site test, and the result can meet the requirement that the bottom strength CBR is greater than 80% in the construction specification. Based on the above structural analysis and the results of in-situ test laying, it can be seen that the pipeline excavation with CLSM backfill can be carried out in a comprehensive surface planning operation after 4 days of temporary repair and maintenance.
In addition, the structural analysis of different planing thicknesses is also carried out. The ESALs values of the common planing thickness of 10 cm and 20 cm are analyzed. From the structural analysis, the ESALs values of the traffic volume of 20 cm are about 3~4 times that of 10 cm. In addition, the light deflection instrument test (LWD) was carried out for the section of 10 cm surface layer and 20 cm surface layer in the ground test pavement. The test results show that the strength of the 20 cm AC surface layer is about 3 times that of 10 cm, which verifies the rationality of the above structural analysis.
Finally, the results of the field test were discussed. It can be seen from the results that the matching design process of CLSM established in this study can meet the requirements of relevant specifications, and the results of the structural analysis were verified. Therefore, the relevant specifications of CLSM were discussed at last in this study, hoping to improve the construction and design quality of CLSM in China by using the results of this study.
關鍵字(中) ★ 管挖回填材料
★ CLSM配比設計流程
★ 有限元素分析
★ 現地試鋪
關鍵字(英) ★ Pipelines Backfilled
★ CLSM
★ Finite Element Analysis
★ Field Test
論文目次 目錄 I
圖目錄 IV
表目錄 VI
第一章 緒論 1
1-1 研究動機 1
1-2研究目的 2
1-3研究方法 2
1-4論文架構及流程 3
第二章 文獻回顧 4
2-1管線挖掘回填材料 4
2-1-1常見回填材料 4
2-1-2 管線挖掘回填材料特性 5
2-1-3管線挖掘回填工法比較 6
2-2CLSM於工程之應用 7
2-2-1CLSM於國內應用情形 7
2-2-2CLSM於國外應用情形 8
2-3CLSM設計及施工規範 10
2-3-1配比設計相關規定 10
2-3-2管線挖掘回填相關施工綱要規範 15
2-3-3管線挖掘施工地方自治條例 17
2-4鋪面結構有限元素分析 20
2-4-1鋪面力學分析方法 20
2-4-2 有限元素應用於鋪面結構 24

第三章 維生管線施工及設計問題探討 30
3-1維生管線作業流程 30
3-2維生管線施工問題探討 31
3-2-1常見施工問題探討 31
3-2-2解決對策 33
3-3維生管線設計問題探討 35
3-3-1設計問題探討 35
3-3-2解決對策 35
第四章 CLSM配比設計流程之探討 36
4-1 建立CLSM配比設計流程 36
4-2CLSM季節影響探討 44
4-3 CLSM抗壓強度預測與彈性模數轉換模式 45
4-3-1CLSM抗壓強度預測 45
4-3-2 CLSM彈性模數轉換模式 50
第五章 管線挖掘回填暫修復結構分析 55
5-1結構分析系統建立及參數設定 55
5-1-1道路結構系統之靜力學分析 56
5-1-2集中質量系統分析理論 58
5-1-3管線挖掘前之道路結構參數 59
5-1-4管線挖掘後之道路結構參數 62
5-1-5荷重模擬參數 63
5-1-6小結 66
5-2有限元素模型精確度確認 66
5-2-1驗證模型建立 66
5-2-2載重分析後結果 69
5-2-3小結 70
5-3管線挖掘暫修復結構模擬分析 71
第六章 管線挖掘回填永久性修復結構分析 77
6-1永久性修復結構分析參數設定 77
6-2管線挖掘回填永久性修復結構分析 79
6-3承載能力分析 79
6-3-1鋪面可承受交通量 79
6-3-2每年可承受交通量 82
第七章 管線挖掘配比設計及施工管理與試鋪驗證 84
7-1管線挖掘配比設計與施工管理 84
7-1-1CLSM配比設計流程 84
7-1-2厚度設計 86
7-2管線挖掘現地試鋪 87
7-3成效試驗規劃與評估 89
7-3-1成效試驗規劃與說明 89
7-3-2成效試驗成果評估 93
7-4驗證成果與規範探討 95
7-4-1施工綱要規範探討 95
7-4-2管線挖掘施工地方自治條例探討 95
第八章 結論與建議 97
8-1 結論 97
8-2 建議 99
參考文獻 100
附件一 CLSM配比設計流程 103
參考文獻 〔1〕 潘昌林、鄭瑞濱,「控制性低強度材料(CLSM)之工程運用」,中華民國第四屆鋪面材料再生學術研討會論文集,2000。
〔2〕 沈永年、陳以洲、王聰田,「低強度高流動性混凝土於管道回填工程之應用」,第十一屆鋪面工程學術研討會, 2001。
〔3〕 魏光譽,「縣市政府提升道路挖掘埋設維生管線管理成效之研究-以桃園縣為例」,國立中央大學,碩士論文,2008
〔4〕 臺灣營建研究院,「控制性低強度材料於土木工程應用之研究」,第六章CLSM 與剩餘土石混合之研究,內政部營建署,2002。
〔5〕 簡瑞村,「預拌混凝土廠分級制度之研究以CLSM廠分級為例」,碩士論文,國立中央大學土木工程學系在職專班,2019。
〔6〕 柯乃文,「控制性低強度回填材料之規範及品質控制之比較」,碩士論文,國立中興大學土木工程學系所,2021。
〔7〕 龔智禹,「混燒飛灰安定化技術與其再利用於控制性低強度回填材料之研究」,碩士論文,國立臺北科技大學土木工程系土木與防災碩士班,2022。
〔8〕 Vahid Alizadeh, Sam Helwany, Al Ghorbanpoor, and Konstantin Sobolev. “Design and application of controlled low strength materials as a structural fill “, Construction and Building Materials, Vol 53, pp 425-431 February 2014.
〔9〕 Lasater, Darin V., “Resilient performances of controlled density fill in utility trench excavations ”, 1990.
〔10〕 Kearsley, E.P. and Wainwright, P.J., “The effect of high fly ash content on the compressive strength of foamed concrete ”, Cement of Concrete Research, Vol 31, pp.105-112, January 2001.
〔11〕 Kearsley, E.P. and Wainwright, P.J., “Porosity and permeability of foamed concrete ”, Cement of Concrete Research, Vol 31, pp. 805-812, May 2001.
〔12〕 Kearsley, E.P, Wainwright, P.J., “The effect of porosity on the strength of foamed concrete ”, Cement of Concrete Research, Vol 32, pp. 233-239, February 2002.
〔13〕 Kearsley, E.P., Wainwright, P.J., “Ash content for optimum strength of 62 foamed concrete ”, Cement of Concrete Research, Vol 32, pp. 241-246, February 2002.
〔14〕 Wu, Jason Y., and Ming-Zhe Lee. “Beneficial reuse of construction surplus clay in CLSM “International Journal of Pavement Research and Technology, Vol 4,pp 293-300, September 2011.
〔15〕 Lini Dev K.,“Controlled Low-Strength Materials (CLSM) as backfill: experimental investigation on CLSM properties and numerical evaluation of stresses and strains using PLAXIS 2D.” Geomechanics and Geoengineering, Published Online: 09, 2022.
〔16〕 Etxeberria Miren, Ainchil Javier, Pérez Ma Eugenia, González Alain, “Use of recycled fine aggregates for Control Low Strength Material Vol 44, pp142-148, Construction and Building Materials , July 2013.
〔17〕 “Report on Controlled Low-Strength Materials ”, reported by ACI 229R-22,2022.
〔18〕 “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete”, reported by ACI 211.1, 1991.
〔19〕 林嘉永、楊健國,「北部第二高速公路路基承載強度CBR之施工品管」,第二屆國道建設技術研討會,1994。
〔20〕 行政院公共工程委員會,「第02726章v10.0級配粒料底層」,2023。
〔21〕 行政院公共工程委員會,「第03377章v9.0控制性低強度回填材料」,2021。
〔22〕 臺北市,「臺北市道路挖掘管理自治條例」,2019。
〔23〕 交通部公路總局,「交通部公路總局受理挖掘公路作業程序手冊」,2019。
〔24〕 Boussinesq, M.J., Applications des potentials, a l’etude de l’equilibre et du movement des solides elastique. Gauthier-Villars, Paris ,1885.
〔25〕 Burmister, D. M., “The Theory of Stresses and Displacements in Layered Systems and Applications to the Design of Airport Runways,” Proceeding, Highway Research Board, Vol. 23, pp.126-144., 1943.
〔26〕 馮天正,「三維有限元素應用於柔性鋪面之非線性分析」,國立中央大學,碩士論文,2000。
〔27〕 徐瑞宏,「道路管線埋設對鋪面強度衰減之影響研究」,國立中央大學,博士論文,2000。
〔28〕 李明輝,「CLSM之抗壓強度預測模式及有限元素分析」,國立屏東科技大學,碩士論文,2012。
〔29〕 張家瑋,「高性能低強度混凝土材料力學行為研究」,國立屏東科技大學,碩士論文,2012。
〔30〕 Blanco, P. Pujadas, S.H.P. Cavalaro, and A. Aguado. “Methodology for the design of controlled low-strength materials. Application to the backfill of narrow trenches “, Construction and Building Materials, Vol.72, pp.23-30, December 2014.
〔31〕 Vahid Alizadeh, Sam Helwany, Al Ghorbanpoor, and Konstantin Sobolev. “Design and application of controlled low strength materials as a structural fill “, Construction and Building Materials, Vol 53, pp 425-431 February 2014.
〔32〕 Saadeldin, Ramy, Yafei Hu, and Amr Henni. “Numerical analysis of buried pipes under field geo-environmental conditions “, International Journal of Geo-Engineering, Vol 6, pp 1-22, June 2015.
〔33〕 Vahid Alizadeh.,“Analytical study for allowable bearing pressures of CLSM bridge abutments.” Transportation Geotechnics, Vol 21, 2019.
〔34〕 Muhammad Asim.,“Prediction of Rutting in Flexible Pavements using Finite Element Method.” Civil Engineering Journal, Vol 7, pp.1310-1326,2021.
〔35〕 Meng Guo and Shuaixiang Zhang.,“Research and Evaluation on Dynamic Response Characteristics of Various Pavement Structures.” Hindawi, Advances in Materials Science and Engineering, Vol 2022, pp.1-15,2022.

〔36〕 ASTM D4123-82, “Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures.”, 1995.
〔37〕 AASHTO, “Standard Specifications for Highway Bridges”, 17th edn. American Association of State Highway and Transportation Officials, Washington, DC, USA,2002.
〔38〕 Kerkhoven, R.E., and G.M. Dormon, "Some Considerations on the California Bearing Ratio Method for the Design of Flexible Pavement," Shell Bitumen Monograph No. 1,1953.
〔39〕 Shook, J.F., F.N. Finn, M.W. Witczak, and C.L. Monismith, "Thickness Design of Asphalt Pavements-The Asphalt Institute Method," Proceedings, 5th International Conference on the Structural Design of Asphalt Pavements, Vol. 1, pp. 17-44,1982.
〔40〕 AASHTO, “Guide for Design of Pavement Structures.” American Association of State Highway and Transportation Officials, Washington D.C, 1993.
〔41〕 ASTM E2583-07, “Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD)", 2020.
〔42〕 ASTM D5874, ”Standard Test Methods for Determination of the Impact Value (IV) of a Soil.”,2016.
〔43〕 Al-Amoudi, O.S.B., Asi, I.M., Wahhab, A&Khan, Z.A.“Clegg Hammer—California-Bearing Ratio Correlations.” Journal of Materials in. Civil Engineering., Vol. 14, No.6, pp.512-523,2002.
指導教授 林志棟 陳世晃(Zhi-Dong Lin Shi-Huang Chen) 審核日期 2023-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明