博碩士論文 110322095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.82.170
姓名 江品謙(Pin-Chian Chiang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 生物啟發式攀爬機器人應用於外牆磁磚缺陷檢測之研究
相關論文
★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks
★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置
★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證★ 混凝土缺陷自動修補機器人之研發
★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究
★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究★ 具即時聽覺辨識之機械手臂應用於螺栓鬆脫檢測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-24以後開放)
摘要(中) 在臺灣的建築法規範下,若是因為外牆磁磚掉落導致的人身傷害或是財務毀損,根據建築法第91條第1項的規定,無論是建商、建物所有權人、使用人、管理人,甚至是公寓大廈的管理委員會,都將必須承擔起法律責任,並且可能遭受罰款和刑事責任。然而,傳統的檢測和維修方式卻面臨許多挑戰,不僅效率低,還需要大量的人力和資源的投入才能完成工作,現今社會缺工的問題越來越嚴重,尤其是對於這種高風險且需要專業技能的工作人力更顯短缺,這無疑是增加了維護建築安全的困難度。除此之外,這種方法在執行過程中可能會出現疏漏,不僅增加了意外的風險,也可能延長了修復工作的時間。因此,尋找一種能提高效率且減少人力投入的新方法,變得至關重要。
本研究旨在研發一款仿生攀爬機器人—GLIMBOT (Gecko-Leech Inspired Climbing Robot),應用於外牆磁磚缺陷檢測,以協助檢測人員遠端遙控進行非破壞性檢測。靈感源於仿生學,模擬壁虎和水蛭的行為模式。攀爬機器人的重要性能之一是吸附能力,因此,在有限的吸附力下,嚴格控制機器人的重量是關鍵。為此,本研究利用3D列印技術製造出機器人的主要部分,實現了輕量化且具有高韌性的機身。本研究亦導入了機器學習的元素,採用梅爾頻率倒譜係數(Mel-Frequency Cepstral Coefficients,MFCC)特徵提取方法來提取聲音的特徵,並透過使用卷積神經網路(Convolutional Neural Networks ,CNN) 進行訓練和學習,並將優化模型部署在AI聲學辨識模組上,經由實地攀爬敲擊辨識實驗,模型對於實際敲擊磁磚的識別準確率能達到74.62%,此方法能快速識別磁磚的缺陷,並將結果即時傳送給使用者。開發過程中,經歷了五個版本的設計,並專注於微調機構設計,釋出足夠空間以容納關鍵零件。最後透過進行吸力測試、摩擦力實驗以及攀爬試驗來得到相關參數,以此作為設計及驗證的依據。
摘要(英) Under the construction regulations in Taiwan, if personal injury or financial damage is caused by the falling of exterior wall tiles, according to Article 91, Paragraph 1 of the Building Act, constructors, building owners, users, managers, and even apartment management committees are required to bear legal responsibility. They may also face fines and criminal liability. However, traditional inspection and maintenance methods face many challenges. They are not only inefficient but also require a large amount of manpower and resource investment to complete the job. The problem of labor shortage in today′s society is becoming increasingly serious, especially for high-risk jobs that require professional skills, which undoubtedly increases the difficulty of maintaining building safety. In addition, there may be omissions in the execution process of these methods, which not only increases the risk of accidents but also possibly extends the time for repair work. Therefore, it is crucial to find a new method that can improve efficiency and reduce manpower input.
This study aims to create a bionic climbing robot - GLIMBOT (Gecko-Leech Inspired Climbing Robot), applied for the detection of defects in exterior wall tiles, to assist inspectors in remote control for non-destructive testing. Inspired by bionics, it simulates the behavior patterns of geckos and leeches. One of the important capabilities of a climbing robot is its adhesion ability, so under limited adhesion, strictly controlling the weight of the robot is key. To this end, this study uses 3D printing technology to make the main parts of the robot, achieving a lightweight and highly resilient body. This study also introduces the elements of machine learning, uses the Mel-Frequency Cepstral Coefficients (MFCC) feature extraction method to extract sound features, and trains and learns through Convolutional Neural Networks (CNN), and deploys the optimized model on a microcontroller. Through field climbing and knocking identification experiments, the model can achieve an accuracy rate of 74.62% for the actual knocking on tiles. This method can quickly identify tile defects and send the results to users in real time. During the development process, five versions of the design were experienced, focusing on fine-tuning the mechanism design to release enough space to accommodate key components. Finally, through suction tests, friction experiments, and climbing tests, relevant parameters are obtained as the basis for design and verification.
關鍵字(中) ★ 攀爬機器人
★ 仿生
★ 3D列印技術
★ 聲音辨識
★ 磁磚檢測
★ MFCC
★ CNN
關鍵字(英) ★ Climbing Robot
★ Bionics
★ 3D Printing
★ Technology
★ Sound Recognition
★ ile Inspection
★ MFCC
★ CNN
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
一、緒論 1
1-1 背景 1
1-2 研究動機與目的 1
1-3 論文架構 3
二、文獻回顧 4
2-1 外牆磁磚檢測相關文獻 4
2-2 外牆檢測攀爬機器人相關文獻 6
三、研究方法 12
3-1 基於生物啟發攀爬機器人GLIMBOT (Gecko Leech Climbing Robot))之外牆磁磚檢測系統概念設計與架構 12
3-2 攀爬機器人GLIMBOT (Gecko Leech Climbing Robot)設計 14
3-2-1 機器人機構設計 14
3-2-2 機器人運動模式 21
3-2-3 機電整合系統設計 24
3-2-4 機器人運動力平衡與傾倒分析 31
3-3 機器學習與音訊處理應用 35
3-3-1 機器學習流程 35
3-3-2 音訊資料採集流程及前置處理 36
3-3-3 MFCC及建立CNN 39
3-3-4 混淆矩陣 41
四、實驗規劃與設計 43
4-1 實驗牆的設計與施作 43
4-2 吸盤腳墊吸力測試及機器人負重實驗 45
4-3 電機零件測試實驗 46
4-4 磁磚缺陷辨識實驗 46
五、實驗與分析結果討論 48
5-1 吸盤腳墊吸力測試及機器人負重實驗 48
5-2 電機零件測試實驗 51
5-3 機器人運動模式之實驗 53
5-3-1 執行前進/後退之實驗 53
5-3-2 平移行進之實驗 57
5-3-3 自轉敲擊之實驗 59
5-4 磁磚缺陷辨識實驗 62
六、結論與未來展望 65
6-1 與相關文獻的比較與探討 65
6-2 本研究之限制與未來改善方向 69
6-3 結論 70
6-4 未來展望 71
七、參考文獻 73
參考文獻 1. Panyavaraporn, J., P. Limsupreeyarat, and P. Horkaew, DWT/MFCC feature extraction for tile tapping sound classification. International Journal of Integrated Engineering, 2020. 12(3): p. 122-130. https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/4230.
2. Pan, N.-H., C.-H. Tsai, K.-Y. Chen, and J. Sung, ENHANCEMENT OF EXTERNAL WALL DECORATION MATERIAL FOR THE BUILDING IN SAFETY INSPECTION METHOD. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2020. 26(3): p. 216-226. https://dx.doi.org/10.3846/jcem.2020.11925.
3. Chou, H.-C., Concrete object anomaly detection using a nondestructive automatic oscillating impact-echo device. Applied Sciences, 2019. 9(5): p. 904. https://doi.org/10.3390/app9050904.
4. Nakagawa, Y., T. Sugimoto, K. Sugimoto, and I. Uechi, Research on improvement of defect detection accuracy by resonance judgment for noncontact acoustic inspection method by acoustic irradiation-induced vibration. Japanese Journal of Applied Physics, 2022. 61(SG): p. SG1035. https://doi.org/10.35848/1347-4065/ac51bd.
5. Stephen, O., U.J. Maduh, and M. Sain, A machine learning method for detection of surface defects on ceramic tiles using convolutional neural networks. Electronics, 2021. 11(1): p. 55. https://doi.org/10.3390/electronics11010055.
6. Abbas, S., H. Moumen, and F. Abbas, Efficient Method Using Attention Based Convolutional Neural Networks for Ceramic Tiles Defect Classification. Revue d′Intelligence Artificielle, 2023. 37(1). https://dx.doi.org/10.18280/ria.370108.
7. Dong, Q., Y. Liu, and X. Liu, Drone sound detection system based on feature result-level fusion using deep learning. Multimedia Tools and Applications, 2023. 82(1): p. 149-171. https://doi.org/10.1007/s11042-022-12964-3.
8. Lu, Y., L. Duanmu, Z.J. Zhai, and Z. Wang, Application and improvement of Canny edge-detection algorithm for exterior wall hollowing detection using infrared thermal images. Energy and Buildings, 2022. 274: p. 112421. https://doi.org/10.1016/j.enbuild.2022.112421.
9. Tomita, K. and M.Y.L. Chew, A Review of Infrared Thermography for Delamination Detection on Infrastructures and Buildings. Sensors, 2022. 22(2): p. 423. https://dx.doi.org/10.3390/s22020423.
10. Ortiz-Sanz, J., M. Gil-Docampo, M. Arza-García, and I. Cañas-Guerrero, IR thermography from UAVs to monitor thermal anomalies in the envelopes of traditional wine cellars: Field test. Remote sensing, 2019. 11(12): p. 1424. https://doi.org/10.3390/rs11121424.
11. Bauer, E., E. Pavon, E. Barreira, and E.K. De Castro, Analysis of building facade defects using infrared thermography: Laboratory studies. Journal of Building Engineering, 2016. 6: p. 93-104. https://doi.org/10.1016/j.jobe.2016.02.012.
12. Tong, F., S. Tso, and M. Hung, Impact-acoustics-based health monitoring of tile-wall bonding integrity using principal component analysis. Journal of sound and vibration, 2006. 294(1-2): p. 329-340. https://doi.org/10.1016/j.jsv.2005.11.017.
13. Sugimoto, K. and T. Sugimoto, Detection of internal defects in concrete and evaluation of a healthy part of concrete by noncontact acoustic inspection using normalized spectral entropy and normalized SSE. Entropy, 2022. 24(2): p. 142. https://doi.org/10.3390/e24020142.
14. Mesaros, A., T. Heittola, T. Virtanen, and M.D. Plumbley, Sound event detection: A tutorial. IEEE Signal Processing Magazine, 2021. 38(5): p. 67-83. https://doi.org/10.1109/MSP.2021.3090678.
15. Le Roux, J., H. Kameoka, N. Ono, and S. Sagayama. Fast signal reconstruction from magnitude STFT spectrogram based on spectrogram consistency. in Proc. DAFx. 2010.
16. Guo, S.-J., Advanced Deterioration Diagnosis Model for Building External Wall Tiles. World Journal of Engineering and Technology, 2018. 06(02): p. 1-12. https://dx.doi.org/10.4236/wjet.2018.62b001.
17. Xu, S., X. Wang, R. Zhu, and D. Wang, Uncertainty Analysis of Inverse Problem of Resistivity Model in Internal Defects Detection of Buildings. Buildings, 2022. 12(5): p. 622. https://doi.org/10.3390/buildings12050622.
18. Chang, C.-Y., S.-S. Hung, L.-H. Liu, and C.-P. Lin, Innovative strain sensing for detection of exterior wall tile lesion: Smart skin sensory system. Materials, 2018. 11(12): p. 2432. https://doi.org/10.3390/ma11122432.
19. Apostolescu, T., C. Udrea, D. Duminica, G. Ionascu, L. Bogatu, and L.A. Cartal, Development of a climbing robot with vacuum attachment cups. The Romanian Review Precision Mechanics, Optics & Mechatronics, 2011. 92(40): p. 92-97.
20. Wu, Z., K. Qiu, and J. Zhang, A smart microcontroller architecture for the Internet of Things. Sensors, 2020. 20(7): p. 1821. https://doi.org/10.3390/s20071821.
21. Wang, Z., Y. Wang, and B. Zhang, Development and Experiment of Clamp Type Submarine Cable Inspection Robot. Machines, 2023. 11(6): p. 627. https://doi.org/10.3390/machines11060627.
22. Hong, S., Y. Um, J. Park, and H.-W. Park, Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot. Science Robotics, 2022. 7(73): p. eadd1017. https://dx.doi.org/10.1126/scirobotics.add1017.
23. Rohith, M., S. Vigneshwaran, and H. Mattoo. Design and Development of Semi-Autonomous Wall Climbing Robot Mechanism. in 2018 2nd International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE). 2018. IEEE. https://doi.org/10.1109/ICMETE.2018.00075.
24. Fang, G. and J. Cheng, Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review. Biomimetics, 2023. 8(1): p. 47. https://doi.org/10.3390/biomimetics8010047.
25. Khan, M.B., T. Chuthong, C.D. Do, M. Thor, P. Billeschou, J.C. Larsen, and P. Manoonpong, iCrawl: an inchworm-inspired crawling robot. IEEE Access, 2020. 8: p. 200655-200668.
26. Wang, W., K. Wang, and H. Zhang, Crawling gait realization of the mini-modular climbing caterpillar robot. Progress in Natural Science, 2009. 19(12): p. 1821-1829.
27. Shi, Z., J. Pan, J. Tian, H. Huang, Y. Jiang, and S. Zeng, An inchworm-inspired crawling robot. Journal of Bionic Engineering, 2019. 16: p. 582-592. https://doi.org/10.1007/s42235-019-0047-y.
28. Lin, T.-H., A. Putranto, P.-H. Chen, Y.-Z. Teng, and L. Chen, High-mobility inchworm climbing robot for steel bridge inspection. Automation in Construction, 2023. 152: p. 104905. https://doi.org/10.1016/j.autcon.2023.10490.
29. Feng, H., N. Chai, and W. Dong, Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers. PLOS ONE, 2015. 10(11): p. e0140776. https://dx.doi.org/10.1371/journal.pone.0140776.
30. Mann, K.H., Leeches (Hirudinea): their structure, physiology, ecology and embryology. Vol. 11. 2013: Elsevier.
31. Kanada, A., F. Giardina, T. Howison, T. Mashimo, and F. Iida, Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators. Soft Robotics, 2019. 6(4): p. 483-494. https://doi.org/10.1089/soro.2018.0115.
32. Su, M., R. Xie, Y. Qiu, and Y. Guan, Design, mobility analysis and gait planning of a leech-like soft crawling robot with stretching and bending deformation. Journal of Bionic Engineering, 2023. 20(1): p. 69-80. https://doi.org/10.1007/s42235-022-00256-3.
33. Bogue, R., Climbing robots: recent research and emerging applications. Industrial Robot: the international journal of robotics research and application, 2019. 46(6): p. 721-727. https://doi.org/10.1108/IR-08-2019-0154.
34. Nguyen, H.-N., R. Siddall, B. Stephens, A. Navarro-Rubio, and M. Kovac. A Passively Adaptive Microspine Grapple for Robust, Controllable Perching. 2019. IEEE. https://dx.doi.org/10.1109/robosoft.2019.8722779.
35. Bian, S., Y. Wei, F. Xu, and D. Kong, A four-legged wall-climbing robot with spines and miniature setae array inspired by longicorn and gecko. Journal of Bionic Engineering, 2021. 18: p. 292-305. https://doi.org/10.1007/s42235-021-0032-0.
36. Shao, D., J. Chen, A. Ji, Z. Dai, and P. Manoonpong. Hybrid soft-rigid foot with dry adhesive material designed for a gecko-inspired climbing robot. in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). 2020. IEEE. https://dx.doi.org/10.1109/RoboSoft48309.2020.9116045.
37. Chen, R., L. Fu, Y. Qiu, R. Song, and Y. Jin, A gecko-inspired wall-climbing robot based on vibration suction mechanism. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019. 233(19-20): p. 7132-7143. https://doi.org/10.1177/0954406219869041.
38. Koh, K.H., M. Sreekumar, and S. Ponnambalam, Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot. Mechatronics, 2016. 35: p. 122-135. https://doi.org/10.1016/j.mechatronics.2016.02.001.
39. Bian, S., F. Xu, Y. Wei, and D. Kong, a novel type of wall-climbing robot with a gear transmission system arm and adhere mechanism inspired by Cicada and Gecko. Applied Sciences, 2021. 11(9): p. 4137. https://doi.org/10.3390/app11094137.
40. Haomachai, W., D. Shao, W. Wang, A. Ji, Z. Dai, and P. Manoonpong, Lateral Undulation of the Bendable Body of a Gecko-Inspired Robot for Energy-Efficient Inclined Surface Climbing. IEEE Robotics and Automation Letters, 2021. 6(4): p. 7917-7924. https://doi.org/10.1109/LRA.2021.3101519.
41. Disabato, S. and M. Roveri. Incremental on-device tiny machine learning. in Proceedings of the 2nd International workshop on challenges in artificial intelligence and machine learning for internet of things. 2020. https://doi.org/10.1145/3417313.3429378.
42. Prabakaran, D. and S. Sriuppili. Speech processing: MFCC based feature extraction techniques-an investigation. in Journal of Physics: Conference Series. 2021. IOP Publishing. https://dx.doi.org/10.1088/1742-6596/1717/1/012009.
43. Clements, G.N., Feature economy in sound systems. Phonology, 2003. 20(3): p. 287-333. https://doi.org/10.1017/S095267570400003X.
44. Huang, X., H. Huang, and Z. Wu, Development of a Variable-Frequency Hammering Method Using Acoustic Features for Damage-Type Identification. Applied Sciences, 2023. 13(3): p. 1329. https://doi.org/10.3390/app13031329.
45. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444. https://doi.org/10.1038/nature14539.
46. Henaff, M., J. Bruna, and Y. LeCun, Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163, 2015. https://doi.org/10.48550/arXiv.1506.05163.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明