博碩士論文 110322056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.191.176.0
姓名 葉承霖(Cheng- Lin Yeh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 沖積扇坡度與水砂比關係之實驗探討
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水砂比的變化會影響沖積扇的坡度,本文以不同實驗探討沖積扇在不同水砂
比情況下的坡面變化。90 度沖積扇實驗以細砂為實驗顆粒,上游條件分為清水沖
刷及高含砂水流兩種為一個供給循環。沖積扇在高含砂水流階段有扇面成長(前堆
過程),其扇之坡度與水砂比成負相關,未經高含砂水流所覆蓋之扇面,其渠寬小
於被高含砂水流覆蓋扇面後之渠寬。四種實驗顆粒(細砂、粗砂、白色 PVC 顆粒
和褐色細磨石)在不同水砂比所對應之渠道坡度,均顯示渠道之坡度與水砂比成負
相關,本文並求得一無因次之坡度與水砂比之關係式。三種顆粒(粗砂、白色 PVC
顆粒和褐色細磨石)所得之無因次化之單寬輸砂量 qs
*、無因次單寬水流功率 ω
*及
Shields number Θ 三者均呈現正相關之關係。
摘要(英) The slope of an alluvial fan is mainly controlled by the water-to-sediment ratio of
the feeding channel. The fan incision and progradation processes on alluvial fans under
different water-to-sediment ratio conditions are experimentally explored in this study.
Fan slopes for different particles and discharges were analyzed by image analysis with
a camera and four laser beams. The equilibrium channel slopes as a funcion of the waterto-sediment ratios were obtained for four dfferent particles (fine sand, coarse sand, white
PVC beads, and brown mill stone), and an unified trend in dimensionless form agrees
well with experimental data. The relationships among the dimensionless unit-width
sediment discharge rate (qs
*
), dimensionless unit-width stream power (ω*
), and Shields
number (Θ) all depict positive correlations.
關鍵字(中) ★ 沖積扇
★ 前堆
★ 水砂比
★ 坡度
關鍵字(英) ★ Alluvial fan
★ Progradation
★ Water-to-sediment ratio
★ Fan Slope
★ Shields number
論文目次 摘要 ................................................................................................................................. i
abstract............................................................................................................................ ii
致謝 ............................................................................................................................... iii
目錄 ............................................................................................................................... iv
圖目錄 ........................................................................................................................... vi
表目錄 ......................................................................................................................... viii
符號表 ........................................................................................................................... ix
第一章 緒論 .................................................................................................................1
1.1 前言....................................................................................................................1
1.2 研究動機............................................................................................................1
1.3 研究內容及架構................................................................................................1
第二章 文獻回顧 .........................................................................................................3
2.1 沖積扇定義........................................................................................................3
2.2 沖積扇的演變....................................................................................................3
2.3 土石流扇與洪水扇............................................................................................4
2.4 沖積扇實驗........................................................................................................7
2.5 單寬水流功率 ω................................................................................................9
2.6 無因次單寬輸砂量 Φ 及 Shields number Θ.....................................................9
第三章 實驗設置與研究方法...................................................................................10
3.1 水砂比沖積扇實驗..........................................................................................10
3.2 水砂比渠道坡度實驗配置說明......................................................................11
3.3 實驗顆粒材料性質..........................................................................................14
3.4 顆粒粒徑分析..................................................................................................15
3.5 顆粒孔隙率實驗..............................................................................................15
v
3.6 顆粒密度實驗..................................................................................................15
3.7 顆粒二維安息角..............................................................................................16
3.8 供砂轉接環......................................................................................................17
3.9 雷射高程標定裝置..........................................................................................18
3.10 影像錄製設備與分析方法............................................................................19
3.11 疊圖分析........................................................................................................20
3.12 不同高程下對應其水平距離之修正............................................................21
3.13 實驗量測方法...............................................................................................22
第四章 實驗數據與結果...........................................................................................24
4.1 水砂比沖積扇實驗..........................................................................................24
4.2 水砂比渠道坡度實驗......................................................................................33
4.3 單寬水流功率 ω..............................................................................................39
4.4 Shields number Θ.............................................................................................39
4.5 無因次單寬水流功率 ω
*
.................................................................................40
4.6 無因次單寬供砂量 qs
*
....................................................................................40
第五章 結論與建議 ...................................................................................................46
5.1 結論..................................................................................................................46
5.2 建議..................................................................................................................47
第六章 參考文獻 .......................................................................................................48
參考文獻 1. 林辰翰(2022),「以實驗探討坡度及流量對沖積扇開析過程之影響」,碩士論
文,國立中央大學土木工程研究所,中壢。
2. Chou, HT., Lee, CF. Falling process of a rectangular granular step. Granular
Matter 13, 39–51 (2011). https://doi.org/10.1007/s10035-010-0221-8
3. de Haas, T., Ventra, D., Carbonneau, P. E., & Kleinhans, M. G. (2014). Debrisflow dominance of alluvial fans masked by runoff reworking and weathering.
Geomorphology, 217, 165–181.
4. de Haas, T., Kleinhans, M. G., Carbonneau, P. E., Rubensdotter, L., & Hauber, E.
(2015). Surface morphology of fans in the high-Arctic periglacial environment of
Svalbard: Controls and processes. Earth-Science Reviews, 146, 163–182.
5. de Haas, T., A.L. Densmore, M. Stoffel, H. Suwa, F. Imaizumi, J.A. BallesterosCánovas, T. Wasklewicz,Avulsions and the spatio-temporal evolution of debrisflow fans,Earth-Science Reviews,Volume 177,(2018),Pages 53-75,ISSN 0012-
8252,https://doi.org/10.1016/j.earscirev.2017.11.007.(https://www.sciencedirect.c
om/science/article/pii/S0012825217302465)
6. de Haas, T., Kruijt, A., and Densmore, A. L. (2018) Effects of debris-flow
magnitude–frequency distribution on avulsions and fan development. Earth Surf.
Process. Landforms, 43: 2779– 2793. https://doi.org/10.1002/esp.4432.
7. de Haas, T., Densmore, A. L., den Hond, T., & Cox, N. J. (2019). Fan-surface
evidence for debris-flow avulsion controls and probabilities, Saline Valley,
California. Journal of Geophysical Research: Earth Surface, 124, 1118–1138.
https://doi. org/10.1029/2018JF004815
8. Densmore, A. L., de Haas, T., McArdell, B., & Schuerch, P. (2019). Making sense
49
of avulsions on debris-flow fans. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K.
Guillen (Eds.), Association of environmental and engineering geologists special
publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring,
modeling, and assessment (pp. 637-644). https://doi.org/10.25676/11124/173161
9. Huang, H. Q. (2010), Reformulation of the bed load equation of Meyer‐Peter and
Müller in light of the linearity theory for alluvial channel flow, Water Resour.
Res., 46, W09533, doi:10.1029/2009WR008974.
10. Reitz, M. D., and D. J. Jerolmack (2012), Experimental alluvial fan evolution:
Channel dynamics, slope controls, and shoreline growth, J. Geophys. Res., 117,
F02021, doi:10.1029/2011JF002261.
11. Wasklewicz, T., Scheinert, C., Development and maintenance of a telescoping
debris flow fan in response to human-induced fan surface channelization, Chalk
Creek Valley Natural Debris Flow Laboratory, Colorado, USA, Geomorphology
(2015), http://dx.doi.org/10.1016/j.geomorph.2015.06.03
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明