博碩士論文 110322050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.226.187.143
姓名 張辰鴻(Chen-Hong Zhang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究
(Research of Calcium Sulfoaluminate Cement Composite Binder For Proportion and Engineering Properties)
相關論文
★ 台61線快速道路養護經費與平坦度分析-以2007-2019為例★ 應用於高放處置設施之低鹼性混凝土性質及其對緩衝材料影響之研析
★ 溫度對預拌型超早強混凝土性質之影響及相應策略★ 紙漿污泥焚化爐飛灰資源化應用作為CLSM細粒料之可行性研究
★ 燃煤飛灰與底灰應用於陶瓷建材之初步研究★ 細粒料含電弧爐碴之檢測方法及對混凝土性質影響研究
★ 以加速環境探討含電弧爐碴砂漿之膨脹行為 及工程性質影響★ 砂膠比與纖維種類對3D列印混凝土的工程性質影響研究
★ 營建剩餘土石方收容處理場所評鑑制度之研究-以桃園市為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-1以後開放)
摘要(中) 硫鋁酸鈣水泥為一種以硫鋁酸鈣(又稱葉綠石,簡寫為C4A3S̅)、矽酸二鈣(又稱貝萊土,簡寫為C2S)及鋁鐵酸四鈣(C4AF)為主要成分組成之特殊水泥,具有早期強度發展快速、凝結時間短、流動性佳及乾縮量小等性質,因應其化學反應及經濟性之考量,需以硫鋁酸鈣水泥熟料(簡稱CSA)、卜特蘭Ⅰ型水泥(簡稱OPC)及無水石膏(簡稱CS̅ )互相調配成硫鋁酸鈣水泥複合膠結材。
本研究將分為「材料參數對水泥漿體水化特性及強度發展之影響」、「CSA水泥砂漿工程性質研究」、「CSA水泥砂漿多元關係建立」三階段進行探討。第一階段主要以固定0.30之水膠比製備水泥漿體,分別根據二元膠結材系統(CSA - CS̅ 系統、OPC - CSA系統)及三元膠結材系統(OPC - CSA - CS̅ 系統)之不同配比組合,評估材料間交互影響性,並探討不同材料比例關係與水化特性之關係及其作為超早強水泥之發展潛力;第二階段主要以水泥砂漿驗證其水化特性及硬固特性,並以強度發展及耐久性評估CSA水泥複合膠結材是否符合ASTM C1600 標準要求(分為四項等級,強度由高至低依序為URH、VRH、MRH、GRH);第三階段則主要以非破壞檢測法針對於一天齡期內之結果,建立其與CSA水泥複合膠結材強度發展之關係,同時評估材料比例與其水化特性、硬固性質及耐久性質之相互關係,並以此建立三元相圖。
水泥漿體方面,CSA - CS̅ 系統中之CS̅ 比例增加時可利於其早期及晚期之強度發展,水膠比0.30之水泥漿試體在3小時最高可達到68 MPa,於28天齡期時仍可有大於110 MPa之抗壓強度表現,同時,CS̅添加量充足 (CS̅/CSA = 1/2、1/3)時可符合ASTM C1600之凝結時間要求。於OPC – CSA 複合膠結材系統中,CSA含量高於20 % 時,其終凝時間將小於10分鐘,其早期(24小時內)強度發展呈隨CSA含量上升而提高之趨勢,在含量高於25 % 時可具有較佳超早強水泥發展潛力,但於齡期達1天後之強度發展則隨CSA含量增加而下降。
水泥砂漿方面,CSA - CS̅系統(CS̅/CSA = 1/2、1/3、1/4、1/5)皆可滿足ASTM C1600中之MRH等級之強度要求,而OPC – CSA及OPC - CSA - CS̅系統以高CSA含量及高CS̅比例表現為佳,其中以配比OPC = 70 % 、CS̅/CSA = 1/2時,可符合MRH(中度早強型, Medium Rapid Hardening)等級之強度要求,配比OPC = 70 % 、CS̅/CSA = 1/3則具備近GRH等級之強度表現;耐久性質方面,依優劣排序分別為CSA - CS̅系統> OPC > OPC - CSA - CS̅系統> OPC – CSA 系統> CSA。
非破壞性檢測方面,以成熟度法評估水泥漿體之抗壓強度關係性時,二者之關係於3小時及6小時具備良好之相關性(R2 > 0.8);但作為24小時後之強度檢測方法較不準確(R2 = 0.1 ~ 0.8);而超音波波速法評估水泥漿體之抗壓強度具備較強之相關性(R2 > 0.95),顯示其作為強度檢測方法具有可行性;由三元相圖討論各配比於不同性質之關係時,可以較少之配比進行試驗,預測其於相同水膠比條件下,其餘未進行試驗配比餘同齡期之下不同配比之結果,並且得以色塊之顏色判斷其趨勢。
摘要(英) Calcium sulfoaluminate cement is a kind of calcium sulfoaluminate (C4A3S̅), dicalcium silicate (also known as Belite soil, abbreviated as C2S) and tetracalcium aluminum ferrite (C4AF). The special cement composed of ingredients has the properties of rapid early strength development, short setting time, good fluidity and small dry shrinkage. In consideration of its chemical reaction and economical considerations, calcium sulfoaluminate cement clinker (CSA) is required , Portland Type I cement (OPC) and anhydrous gypsum (CS̅) are blended together to form calcium sulfoaluminate cement composite cement.
This study will be divided into three phases: "the influence of material parameters on the hydration characteristics and strength development of cement paste", "research on engineering properties of CSA cement mortar", and "establishment of multiple relationship of CSA cement mortar". The first stage is mainly to prepare cement slurry with a fixed water-binder ratio of 0.30, according to the difference between the binary binder system (CSA - CS̅ system, OPC - CSA system) and the ternary binder system (OPC - CSA - CS̅ system) Proportion combination, evaluate the interaction between materials, and explore the relationship between the ratio of different materials and hydration characteristics and its development potential as super early strength cement; the second stage mainly uses cement mortar to verify its hydration characteristics and hardening characteristics , and evaluate whether the CSA cement composite binder meets the requirements of the ASTM C1600 standard based on safety and durability; the third stage mainly uses non-destructive testing methods to establish the strength development of the CSA cement composite binder based on the results within one day of age At the same time, evaluate the relationship between the proportion of materials and their hydration properties, hard solid properties and durability properties, and establish a ternary phase diagram.
In terms of cement paste, increasing the proportion of CS̅ in the CSA-CS̅ system can be beneficial to its early and late strength development. The cement slurry specimen with a water-binder ratio of 0.30 can reach a maximum of 68 MPa in 3 hours, and it is still strong at 28 days. It can have a compressive strength greater than 110 MPa. At the same time, when the amount of CS̅ is sufficient (CS̅/CSA = 1/2, 1/3), it can meet the setting time requirements of ASTM C1600. In the OPC-CSA composite binder system, when the CSA content is higher than 20%, its final setting time will be less than 10 minutes, and its early (within 24 hours) strength development tends to increase with the increase of CSA content. When it is 25%, it can have better development potential of super early strength cement, but the strength development after 1 day of age will decrease with the increase of CSA content.
For cement mortar, the CSA - CS̅ system (CS̅/CSA = 1/2, 1/3, 1/4, 1/5) can meet the strength requirements of the MRH grade in ASTM C1600, while OPC - CSA and OPC - CSA - The CS̅ system performs best with high CSA content and high CS̅ ratio. Among them, when the ratio of OPC = 70 % and CS̅/CSA = 1/2, it can meet the strength requirements of the MRH grade. The ratio of OPC = 70 % and CS̅/ CSA = 1/3 means that it has a strength performance close to GRH level; in terms of durability, the order of durability is CSA - CS̅ system > OPC > OPC - CSA - CS̅ system > OPC - CSA system > CSA.
In terms of non-destructive testing, when the maturity method is used to evaluate the relationship between the compressive strength of cement paste, the relationship between the two has a good correlation at 3 hours and 6 hours (R2 > 0.8); but as the strength after 24 hours The detection method is relatively inaccurate (R2 = 0.1 ~ 0.8); and the ultrasonic wave velocity method has a strong correlation (R2 > 0.95) in evaluating the compressive strength of cement paste, which shows that it is feasible as a strength detection method; When discussing the relationship between various proportions and different properties in the meta-phase diagram, it is possible to conduct experiments with fewer proportions, and predict the results of other proportions that have not been tested under the same age and different proportions under the same water-cement ratio conditions. And the trend can be judged by the color of the color block.
關鍵字(中) ★ 硫鋁酸鈣水泥
★ 早強水泥
★ 水泥複合膠結材
★ 鈣釩石
關鍵字(英) ★ calcium sulfoaluminate cement
★ early strength cement
★ calcium sulfoaluminate cement binder
★ Ettringite
論文目次 摘要 i
Abstract iii
致謝 v
目錄 ii
圖目錄 vi
表目錄 xii
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究內容 3
第 2 章 文獻回顧 5
2.1 超早強水泥規範及使用要求 5
2.1.1 超早強水泥定義及要求 5
2.1.2 超早強水泥種類 6
2.1.3 超早強水泥應用 7
2.2 硫鋁酸鈣水泥分類及特性 9
2.2.1 硫鋁酸鈣水泥分類及定義 9
2.2.2 硫鋁酸鈣水泥機理 11
2.3 卜特蘭水泥 12
2.3.1 卜特蘭水泥定義 12
2.3.2 卜特蘭水泥水化機理 13
2.4 石膏(無水石膏、半水石膏、二水石膏) 14
2.5 多元膠結材系統 17
2.5.1 CSA - CS二元膠結材系統 18
2.5.2 OPC – CSA及OPC – CSA - CS 多元膠結材系統 19
2.6 物理化學性質影響 20
2.6.1 水泥凝結時間 20
2.6.2 強度成長 22
2.6.3 體積穩定性 24
2.6.4 水化熱 27
2.6.5 硫酸鹽侵蝕 29
2.7 非破壞檢測法與抗壓強度關係 31
2.7.1 反彈錘法 32
2.7.2 貫入阻力法 32
2.7.3 拉拔試驗量測法 33
2.7.4 超音波波速量測法 33
2.7.5 成熟度法 35
2.8 抗壓強度及抗彎強度關係 36
第 3 章 研究規劃 39
3.1 試驗規劃及目的 39
3.2 材料基本性質 41
3.3 CSA水泥基材水化特性及性質發展 46
3.3.1 CSA水泥基材配比及試驗編號 49
3.3.2 基本試驗項目 51
3.3.3 水化機理研究 55
3.4 CSA水泥砂漿工程性質研究 59
3.4.1 水泥砂漿配比 62
3.4.2 水泥砂漿拌和程序 64
3.4.3 水泥砂漿強度及工作性探討 64
3.4.4 耐久性試驗 66
3.4.5 水化特性及強度發展推演 67
第 4 章 試驗結果 71
4.1 CSA水泥基材水化特性及發展 71
4.1.1 水泥漿體單位重 74
4.1.2 凝結時間 75
4.1.3 水泥漿體抗壓強度 79
4.1.4 水化24小時內升溫放熱曲線 88
4.1.5 CSA水泥基材超音波波速試驗 90
4.1.6 CSA水泥基材成熟度 95
4.1.7 結晶形貌-SEM試驗 100
4.1.8 內部緻密性及孔隙分布狀態 107
4.1.9 熱壓膨脹試驗 109
4.1.10 CSA水泥基材水化特性及發展小結 111
4.2 CSA水泥砂漿工程性質研究 114
4.2.1 水泥砂漿流度 116
4.2.2 水泥砂漿抗壓強度 116
4.2.3 水泥砂漿抗彎強度 121
4.2.4 耐久性質 124
4.2.5 CSA水泥砂漿工程性質研究小結 130
4.3 CSA水泥砂漿多元關係建立 132
4.3.1 水化特性 132
4.3.2 強度發展 134
4.3.3 水泥砂漿抗壓及抗彎強度關係 134
4.3.4 比較成熟度法及超音波波速試驗法 138
4.3.5 三元相圖推演 140
4.4 綜合討論 145
4.4.1 CSA - CS二元膠結材系統配比 145
4.4.2 OPC – CSA及OPC – CSA - CS 多元膠結材系統配比 145
第 5 章 結論及建議 147
5.1 結論 147
5.2 建議 148
參考文獻 151
圖附錄 158
表附錄 160
參考文獻 [1] ASTM C1600/C1600M. Standard Specification for Rapid Hardening Hydraulic Cement. 2019
[2] E Najafi Kani and A Allahverdi. (2010), ”Fast set and high early strength cement fromlimestone, natural pozzolan and fluorite.”, International Journal of Civil Engineering, Vol 8, 362-369.
[3] RWC CSA:Binder-Calcium Sulfoaluminate Cement,2020年8月,取自 www.royalwhitecement.com
[4] ALCOA:High Aluminia Cements & Chemical Binders,Institute of Refractories Engineering。2020年8月,取自 www.almatis.com/media/oipgcnuk/high-alumina-cements-chemical-binders
[5] Hewlett P.C. (1998), “Lea′s Chemistry of Cement and Concrete”, 4th Ed, Arnold.
[6] 交通部民用航空局(2018),「西雅圖機場超早強混凝土實務案例觀摩」,取自https://report.nat.gov.tw/ReportFront/ReportDetail/detail?sysId=C10701849。
[7] 億穎國際股份有限公司,工程案例實績。
URL:https://www.vii.com.tw/vii_products_14.html
[8] 張勝晟(2016),營運中離島機場道面整修工程師做特性-馬公機場為例,第十八屆鋪面工程學術研討會暨2015世界華人鋪面專家學術研討會,第十四卷,第一期。
[9] Manu K. Mohan, A.V. Rahul, Geert De Schutter and Kim Van Tittelboom (2021) “Early age hydration , rheology and pumping characteristics of CSA cement-based 3D printable concrete” , Construction and Building Materials , Vol 275, 122-136.
[10] Joseph Ingaglio, John Fox, Clay J. Naito, Paolo Bocchini (2019) Material characteristics of binder jet 3D printed hydrated CSA cement with the addition of fine aggregates , Construction and Building Materials , Vol206, 294-503.
[11] Association M.P. FAS 12 Novel cements: low energy, low carbon cements. 2013.
[12] Quillin Keith (2001) “Performance of belite–sulfoaluminate cements” , Cement. Concrete. Research ,Vol 31(9), 1341-1349.
[13] Theodore Hanein, Fredrik Paul Glasser, Marcus Nigel Campbell Bannerman (1952) “Thermodynamics of the cement kiln.”, 3rd International Congress on the Chemistry of Cement, 750–779.
[14] Piyush Chaunsali (2015) “Early-Age Hydration and Volume Change of Calcium Sulfoaluminate Cement-Based Binders”,Degree of Doctor of Philosophy , University of Illinois at Urbana-Champaign.
[15] GB/T 20472-2006 「硫鋁酸鹽水泥」,中華人民共和國國家標準。
[16] Peiming Wang a b, Nan Li a and Linglin Xu(2017) “Hydration evolution and compressive strength of calcium sulphoaluminate cement constantly cured over the temperature range of 0 to 80°C”, Cement. Concrete. Research.,Vol 100, 203-213
[17] Wang YM, Su MZ and Zhang L. (1999) Sulphoaluminate cement. China : Peking University Press, ISBN 7-5639-0819-6.
[18] Zhang L. (2000) Microstructure and performance of calcium sulfoaluminate cements., PhD thesis, University of Aberdeen;.
[19] Winnefeld F, Barlag S. , Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulfoaluminate clinker.ZKG Int. (in press).
[20] A. Telesca a, M. Marroccoli, M.L. Pace, M. Tomasulo, G.L. Valenti, P.J.M. Monteiro(2014)“A hydration study of various calcium sulfoaluminate cements , A hydration study of various calcium sulfoaluminate cements” , Cement & Concrete Composites, Vol53, 224–232.
[21] S.W. Tang, H.G. Zhu, Z.J. Li, E. Chen and H.Y. Shao (2015)“Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age”, Construction and Building Materials, Vol 75, 11-18.Winnefeld F and Barbara Lothenbach (2010) Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling , Cement and Concrete Research , Vol 40, 1239-1247.
[22] Winnefeld F and Lothenbach B (2016) “Phase equilibria in the system Ca4Al6O12SO4 – Ca2SiO4 – CaSO4 – H2O referring to the hydration of calcium sulfoaluminate cements”, RILEM Technical Letters , Vol 1: 10 - 16
[23] 龔人俠(1977),水泥化學概論,泥工業叢書,第一輯。
[24] 顏聰 (2014) 土木材料 , ISBN 957-41-3397-4。
[25] Zhang J.(2020) Potential application of Portland cement-sulfoaluminate cement system in precast concrete cured under ambient temperature , Construction and Building Materials , Vol 251, 118869.
[26] ASTM C150/C150M-22 , Standard Specification for Portland Cement , 2022
[27] F. W. Locher, W. Richartz and S. Sprung (1976) “Erstarren von Zement - Teil 1: Reaktion und Gefügeentwicklung In: ZKG”, Jahrgang 29, Heft 10, Seite 435.
[28] P.Kumar Mehta (2006) “Concrete”, The McGraw-Hill Companies , 3nd edtion.
[29] 郭文田,潘煌鍟,陳宗揚(2004),「石膏含量與型式對含強塑劑水泥漿流動性質之影響」,中華民國第七屆結構工程研討會,22-24。
[30] García-Maté, M., De la Torre, A.G., León-Reina, L., Losilla, E.R., Aranda, M.A.G. and Santacruz (2014) I., Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement, Cement & Concrete Composites.
[31] Zhiwei Zhang.and Jueshi Qian (2017) Effect of protogenetic anhydrite on the hydration of cement under different curing temperature, Construction and Building Materials, Vol.142, 417-422.
[32] Zhang J.(2020) Microstructure and Properties of Sulfoaluminate Cement-Based Grouting Materials: Effect of Calcium Sulfate Variety, Advances in Materials Science and Engineering , Vol 2020, Article ID 7564108, 8 pages
[33] 建築材料科學研究所 (1978),「硫鋁酸鹽水泥水化、硬化及其特性」,矽酸鹽學報,第六卷,第三期。
[34] 崔素萍 (2005),「石膏品種對矽酸鹽-硫鋁酸鹽複合體系水泥性能的影響」,水泥工程,第一期。
[35] Jianwu Zhang, Xuemao Guan, Xiao Wang,Xianwei Ma,1Zhixin Li,Zhuoyue Xu, and Biao Jin (2020) Microstructure and Properties of Sulfoaluminate Cement-Based Grouting Materials: Effect of Calcium Sulfate Variety, Advances in Materials Science and Engineering, Vol 2020, Article ID 7564108, 8 pages, https://doi.org/10.1155/2020/7564108
[36] Vahid Afroughsabet, Luigi Biolzi, Paulo J.M. Monteiro and Matteo M. Gastaldi (2021) “Investigation of the mechanicalan ddurability properties of sustainable high performance concrete based on calcium sulfoaluminat cement”, Journal of Building Engineering, Vol 43 , 102656
[37] Federica Bertola, Daniela Gastaldi, Sara Irico and Geo Paul (2022) “Influence of the amount of calcium sulfate on physical/mineralogical properties and carbonation resistance of CSA-based cements”, Cement and Concrete Research, Vol. 151, 106634.
[38] P. W. Brown, and J. V. Bothe (2015) “The stability of ettringite”, Advances in Cement Research,Vol. 5(18),47-63
[39] CNS 61 R2001 ,卜特蘭水泥 , 2021
[40] Mohsen Ben Haha, Frank Winnefeld and Alexander Pisch(2019) Advances in understanding ye′elimite-rich cements , Cement and Concrete Research, Vol 123, 105778
[41] Isabel Bolaños, Romain Trauchessec and Jorge Iván Tobón (2020) “Influence of the ye’elimite/anhydrite ratio on PC-CSA hybrid cements”, Materials Today Communications, Vol. 22, 100778.
[42] Guangxiang Ji ,Hafiz Asad Ali, Keke Sun, ,Dongxing Xuan, Xiaoqin Peng and andJingjun Li (2023) “Volume Deformation and Hydration Behavior of Ordinary Portland Cement/Calcium Sulfoaluminate Cement Blends”, Development and Characterization of Novel Cement Materials, Vol.16 (7), 2652.
[43] Piyush Chaunsali and Paramita Mondal (2015) “Influence of calcium sulfoaluminate (CSA) cement content on expansion and hydration behavior of various ordinary Portland cement-CSA Blends.”, Journal of the American Ceramic Society,Vol. 98, 2617-2624.
[44] Trauchessec, R.; Mechling, J.; Lecomte, A.; Roux, A and Le Rolland, B. (2015)” Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends.” Cement and Concrete Composites,.Vol. 56, 106-114.
[45] Pelletier, L.; Winnefeld, F and Lothenbach, B.(2010) “The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite: Hydration mechanism and mortar properties.”, Cement and Concrete Composites.Vol. 32, 497–507.
[46] Guoxin Li, Junjie Zhang, Song Zhanping and Chen Shi (2018) “Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures” , Construction and Building Materials, Vol 160 , 427–439.
[47] Davide Sirtoli., Mateusz Wyrzykowski., Riva, Paolo Riva and Pietro Lura. (2020) “Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements”. Material Structure,Vol. 53, 126 .
[48] Romain Trauchessec, Jean-Michel Mechling and André Roux (2014) “Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend “, Advances in Cement Research, Vol. 26(6) , 325–333.
[49] Sidney Mindess, J. Francis Young and David Darwin (1996) “Concrete”, Pearson Education Taiwan Ltd., , 2nd Edition.
[50] Wei-Chien Wang, Hoang Trung Hieu Duong and Chen-Hong Zhang (2023) Influence of accelerating admixtures on high early strength cement performance using heat curing method , Case Studies in Construction Materials ,Volume 18 , e01746.
[51] Neenu S.K.(2021) “Types of Shrinkages in Concrete and its Preventio”. THE CONSTRUCTOR.
[52] Ravindra K. Dhir OBE, Jorge de Brit, Rui V. Silva and Chao Qun Lye (2019) “A volume in Woodhead Publishing Series in Civil and Structural Engineering”, Sustainable Construction Materials,Vol 1.
[53] Yves F. Houst(1997) Carbonation Shrinkage of Hydrated Cement Paste,Fourth CANMET/ACI International Conference on Durability of Concrete, Sydney, supplementary, 481-491.
[54] Ali Sayigh (2012) Comprehensive Renewable Energy, Elsevier, Vol 6.
[55] M. Steiger (2005) “Crystal growth in porous materials—I: the crystallization pressure of large crystals”, Journal of Crystal Growth, Vol. 282, 455–469.
[56] M. Steiger (2005) “Crystal growth in porous materials—II: influence of crystal size on the crystallization pressure”, Journal of Crystal Growth, Vol. 282, 470–481.
[57] J. Bizzozero, C. Gosselin and K.L. Scrivener (2014) “Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate”, Cem. Concr. Res. Vol. 56, 190-202.
[58] P. Chaunsali, P. Mondal (2016) “Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion”, Cem. Concr. Res. Vol. 80, 10-20.
[59] Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston and Andre Nonat (2011)” Mechanisms of cement hydration” , Cement and Concrete Research , Vol. 41(12), 1208-1223.
[60] McIntosh, J. D. and M.Sc (1949) “Electrical Curing of Concrete”, Magazine of Concrete Research, Vol. 1, No1, 21-28.
[61] 張磊(2006),「混凝土硫酸鹽侵蝕過程及主要產物研究進展」,混凝土與水泥製品,2006年第6期。
[62] Eric Beschera, Edward K. Rice and Chris Ramseyer (2016) “Sulfate resistance of calcium sulphoaluminate cement”, Journal of Structural Integrity and Maintenance Vol.1(3), 131-139.
[63] Hou Wei, , Zanqun Liu and Fuqiang He (2020)“Sulfate diffusion in calcium sulphoaluminate mortar”, Construction and Building Materials , Volume 234, 117312 .
[64] 溫莎特針圖片來源,URL:https://labequip.co.za/product/windsor-probe-bs1881-207-astm-c803-lcn780/
[65] 貫入阻力法與式樣界面圖圖片來源。
URL:https://www.engineersdaily.com/2011/04/penetration-resistance-test-astm-c-803.html
[66] 超音波速量測法示意圖,URL:http://www.allstartech.com.tw/Products3-1.html
[67] ASTM C597-16 , Standard Test Method for Pulse Velocity Through Concrete
[68] 郭世芳(2007),「探討超音波速度與混凝土抗壓強度之關係與其應用」,土木工程學系博士論文,國立中興大學。
[69] McIntosh, J. D.(1949) “Electrical Curing of Concrete”, Magazine of Concrete Research, Vol. 1(1), 21-28.
[70] Saul, A.G.A.(1951) “Principles Underlying the Steam Curing of Concrete at Atmospheric Pressure”, Magazine of Concrete Research, Vol.2(6),127-140.
[71] Plowman, J. M. (1956) “Maturity and the Strength of Concrete”,Magazine of Concrete Research, Vol 5(14), 61.
[72] Hansen, F. P. and Pedersen, E. J (1977) “Maturity Computer for Controlled Curing and Hardening of Concrete”, Nordisk Betong,Vo. l1, 19-34.
[73] 楊定良,黃隆茂(2007),「混凝土的抗彎強度及抗壓強度於剛性舖面工程之使用要點」,現代營建,11-16。
[74] ACI 318-19, "Building Code Requirements for Structural Concrete",2022.
[75] ACI 301, "Specifications for Structural Concrete” ,Volume91,pp.67-107,1994
[76] 姜馨雅(2020),「水泥混凝土抗彎強度影響因素之研究」,高苑科技大學土木工程研究所,碩士論文。
[77] 房性中(2010),「剛性水泥混凝土鋪面使用機制探討」,技師報,第145期。
[78] 房性中(2019),「水泥混凝土強度轉換公式之問題探討」,技師報,第245期。
[79] P.K. Mehta (1973) “Mechanism of expansion associated with ettringite formation”, Cem. Concr. Res.Vol. 3, 1-6.
[80] ACI Committee 228 Report (1996). In-Place Methods to Estimate Concrete Strength, ACI Standard ACI 228.1R-95.
[81] 黃志宏(2004),「混凝土版早期強度之成熟度模式及試驗」,土木工程學系博士論文,逢甲大學。
[82] Nurse,R.W. (1949) “Steam Curing of Concrete”, Magazine of Concrete Research, Vol. 1,No 2, 79-88.
[83] Nurse, R. W. (1949) “Steam Curing of Concrete”, Magazine of Concrete Research, Vol. 1(2), 79-88.
[84] T.P. Wilson, K.L. Smith, and A.R. Romine (1999), “Materials and procedures for rapid repair of partial-depth spalls in concrete pavements”, FHWA Report No. FHWA-RD-99-152.
指導教授 王韡蒨(Wei-Chien Wang) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明