參考文獻 |
1. 王昱智,「副產石灰為混凝土膠結材料之配比與特性研究」,國立中央大學土木工程研究所,碩士論文,2008。
2. 王怡翔,「添加循環式流體化床飛灰及水淬高爐石粉對於混凝土性質影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2013。
3. 白冷、彭家惠、張建新、萬體智,「天然硬石膏水化硬化研究」,非金屬礦物學刊(中國),第31卷,第4期,2008。
4. 朱學德,「添加循環式流體化床混燒飛灰及粉煤飛灰對於水泥質複合材料性能影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2015。
5. 吳羽帆,「水化早期溫度對延遲性鈣礬石形成之影響」,國立中央大學土木工程學系,碩士論文,2014。
6. 吳俊澔,「抑制副產石灰掺合水淬爐石粉的膨脹及緩凝行為之探討」,國立中央大學土木工程研究所,碩士論文,2014。
7. 汪翊鐙,「CFB副產石灰掺配爐石粉製作混凝土成效研究」,國立中央大學土木工程研究所,碩士論文,2009。
8. 阮王英 (Nguyen Hoang Anh),「三相再生工業副產品無水泥生態膠結材之自充填混凝土工程性質與耐久性」,國立臺灣科技大學營建工程系,博士學位論文,2016。
9. 林庭佑,「使用CFBC灰對於水泥基複合材料抗硫酸鹽性能之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2013。
10. 林耘丞,「添加循環式流體化床飛灰及粉煤飛灰對於混凝土性質影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2013。
11. 徐永翰,「水化副產石灰應用於軟弱土壤改良之研究」,國立中央大學土木工程學系,碩士論文,2013。
12. 徐仲豪,「添加強塑劑對CFB副產石灰-水淬爐石粉膠結系統工作性影響之研究」,國立中央大學土木工程研究所,碩士論文,2015。
13. 徐錚,「循環流化床脫硫灰渣的性能和應用研究」,亞洲環保雜誌(中國),2011。
14. 翁世昌,「以副產石灰作為回填材料之研究」,國立成功大學土木工程學系,碩士論文,2011。
15. 翁和德,「循環式流體化床鍋爐技術」,化工技術學刊,第6卷,第9期,第180-193頁,1998。
16. 馬逸群,「添加循環式流化床飛灰及水淬高爐石粉、粉煤灰對水泥砂漿特性影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2015。
17. 張士晉,「掺CFB副產石灰之鹼激發飛灰膠凝材料工程性質之研究」,國立成功大學土木工程學系,碩士論文,2009。
18. 張大鵬、Anne Thymotie、Anthony Iskandar、Fifi Hartanto、楊巧薇、盧偉峻、廖培桐、吳佳穎,「混合脫硫飛灰生態水泥混凝土產製與工程性質之研究」,中華民國國家科學及技術委員會,科技部補助專題研究計畫成果報告,2017。
19. 張文瑋,「以副產石灰作為膠結材料之初步研究」,國立成功大學土木工程學系,碩士論文,2010。
20. 張峻閡,「CFBC飛灰作為鹼激發劑與標準之符合度及混凝土性質研究」,國立交通大學土木工程研究所,碩士論文,2013
21. 張曉佳,「弱鹼環境下硫酸鹽侵蝕水泥石中C-S-H凝膠結構的形成與演變」,安徽建築大學(中國),碩士論文,2019。
22. 郭祐豪,「綠色無水泥混凝土工程性質之研究」,國立臺灣科技大學營建工程系,碩士論文,2015。
23. 陳冠宇,「不同型態之CFB副產石灰應用於混凝土之研究」,國立中央大學土木工程研究所,碩士論文,2011。
24. 陳冠宇、林瑛璽、林智揚、黃偉慶,「以CFB脫硫飛灰活化爐石粉應用於混凝土之成效研究」,鋪面工程,第11卷,第2期,第17-24頁,2013。
25. 陳冠宇、翁榮聖、黃偉慶,「脫硫灰渣應用於混凝土之成效研究」,鋪面工程,第9卷,第4期,第65-74頁,2011。
26. 陳致仰,「飛灰含量對無水泥生態混凝土耐久性質之效應」,國立臺灣科技大學營建工程系,碩士論文,2016。
27. 陳韋嘉,「添加爐石粉對混凝土抗壓強度及滲透行為之探討」,國立臺灣海洋大學河海工程學系,碩士論文,2005。
28. 陳義中,「循環式流化床燃燒飛灰應用於混凝土特性之研究」,國立宜蘭大學建築與永續規畫研究所,碩士論文,2011。
29. 黃兆龍,「混凝土性質與行為」,詹氏書局,1999。
30. 黃偉慶、潘奕銘、廖小媛、王昱智、汪翊鐙,「CFB副產石灰摻配爐石粉製作混凝土成效研究」總結報告,2010。
31. 黃偉慶、陳冠宇、翁榮聖、徐永翰,「充分應用 CFB 脫硫飛灰製作混凝土之配方研究」,台塑石化股份有限公司煉油事業部委託研究計畫總結報告,2012。
32. 黃從源,「三相生態混凝土工程性質之研究」,國立臺灣科技大學營建工程系,碩士論文,2014。
33. 黃暉淇,「循環式流化床燃燒飛灰應用於水泥質複合材料之機理與特性研究」,國立臺灣海洋大學材料工程研究所,碩士論文,2008。
34. 楊舒予,「以CFB副產石灰作為水淬爐石粉激發劑之可行性探討」,國立中央大學土木工程研究所,碩士論文,2013。
35. 劉數華、閻培渝,「石灰石粉在複合膠凝材料水化中的作用機理」,水泥工程(中國),第六期,第6-8頁,2008。
36. 鄧德華、肖佳、元強、劉贊群、張文恩,「石灰石粉對水泥基材料抗硫酸鹽侵蝕性的影響及其機理」,矽酸鹽學報(中國),第34卷,第10期,2006。
37. 蕭李仁,「添加循環式流體化床飛灰及水淬高爐石粉、粉煤飛灰對混凝土耐久性與微觀特性影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2014。
38. 蕭定群,「副產石灰配合再生粒料製作無水泥混凝土可行性評估」,國立中央大學土木工程研究所,碩士論文,2010。
39. 錢覺時、鄭洪傳、王智、宋遠明、楊娟,「流化床燃煤固硫灰碴活性評定方法」,煤炭學報,第31卷,第4期,第506-510頁,2006。
40. 譚桂榮、吳秀俊,「CFB脫硫灰渣的性能及應用研究」,粉煤灰綜合利用(中國),中國,2009。
41. 黨輝,王洪昇,黃紅,楊愛麗,「循環流化床脫硫灰渣的特性及應用初探」,環保技術(中國),2004。
42. Amine, Y., Leklou, N., & Amiri, O. (2017). “Effect of supplementary cementitious materials (scm) on delayed ettringite formation in heat-cured concretes.” Energy Procedia, Vol. 139, pp. 565–570.
43. Bakolas, A., Aggelakopoulou, E., Moropoulou, A., & Anagnostopoulou, S. (2006). “Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes.” Journal of Thermal Analysis and Calorimetry, Vol. 84(1), pp. 157–163.
44. Barbarulo, R., Peycelon, H., & Leclercq, S. (2007). “Chemical equilibria between C–S–H and ettringite, at 20 and 85°C.” Cement and Concrete Research, Vol. 37(8), pp. 1176–1181.
45. Batic, O. R., Milanesi, C. A., Maiza, P. J., & Marfil, S. A. (2000). “Secondary ettringite formation in concrete subjected to different curing conditions.” Cement and Concrete Research, Vol. 30(9), pp. 1407–1412.
46. Bellmann, F., & Stark, J. (2009). “Activation of blast furnace slag by a new method.” Cement and Concrete Research, Vol. 39(8), pp. 644–650.
47. Ben Haha, M., Le Saout, G., Winnefeld, F., & Lothenbach, B. (2011). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cement and Concrete Research, Vol. 41(3), pp. 301–310.
48. Burroughs, J. F., Shannon, J., Rushing, T. S., Yi, K., Gutierrez, Q. B., & Harrelson, D. W. (2017). “Potential of finely ground limestone powder to benefit ultra-high performance concrete mixtures.” Construction and Building Materials, Vol. 141, pp. 335–342.
49. Chi, M., Liu, Y., Huang, R. (2015). “Mechanical and microstructural characterization of alkali-activated materials based on fly ash and slag.” IACSIT International Journal of Engineering and Technology, Vol. 7(1), pp. 59-64.
50. Collepardi, M. (1999). “Damage by Delayed Ettringite Formation.” American Concrete Institute (ACI), Vol. 21(1), pp. 69-74.
51. Collepardi, M. (2003). “A state-of-the-art review on delayed ettringite attack on concrete.” Cement and Concrete Composites, Vol. 25(4-5), pp. 401–407.
52. Dayarathne, W. H. R. S., Galappaththi, G. S., Perera, K. E. S., & Nanayakkara S. M. A. (2013). “Evaluation of the potential for delayed ettringite formation in concrete”. in National engineering conference 2013, pp. 59-66.
53. Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). “Effects of sulfate on cement mortar with hybrid pozzolan substitution.” Engineering Science and Technology, an International Journal, Vol. 21(3), pp. 275–283.
54. Ekolu, S. O., Thomas, M. D. A., & Hooton, R. D. (2006). “Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism.” Cement and Concrete Research, Vol. 36(4), pp. 688–696.
55. El-Hachem, R., Rozière, E., Grondin, F., & Loukili, A. (2012). “Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack.” Cement and Concrete Research, Vol. 42(10), pp. 1327–1335.
56. Escadeillas, G., Aubert, J. E., Segerer, M., & Prince, W., “Some factors affecting delayed ettringite formation in heat-cured mortars.” Cement and Concrete Research, Vol. 37 (10), pp. 1445-1452, (2007).
57. Famy, C., Scrivener, K. ., Atkinson, A., & Brough, A. . (2001). “Influence of the storage conditions on the dimensional changes of heat-cured mortars.” Cement and Concrete Research, Vol. 31(5), pp. 795–803.
58. Famy, C., Scrivener, K. ., Atkinson, A., & Brough, A. (2002). “Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars.” Cement and Concrete Research, Vol. 32(2), pp. 269–278.
59. Fu, Y., & Beaudoin, J. J. (1996). “Microcracking as a precursor to delayed ettringite formation in cement systems.” Cement and Concrete Research, Vol. 26 (10), pp. 1493-1498.
60. Fu, Y., Ding, J., & Beaudoin, J. J. (1997). “Expansion of portland cement mortar due to internal sulfate attack.” Cement and Concrete Research, Vol. 27( 9), pp. 1299-1306
61. Gabrisová, A., Havlica, J., & Sahu, S. (1991). “Stability of calcium sulphoaluminate hydrates in water solutions with various pH values.” Cement and Concrete Research, Vol. 21(6), pp. 1023–1027.
62. Gao, D., Che, Q., Meng, Y., Yang, L., & Xie, X. (2022). “Properties evolution of calcium sulfoaluminate cement blended with ground granulated blast furnace slag suffered from sulfate attack.” Journal of Materials Research and Technology, Vol. 17, pp. 1642-1651.
63. Gartner, E., Walenta, G., Morin, V., Termkhajornkit, P., Baco, I., & Casabonne, J. M. (2011). “Hydration of a belite-calciumsulfoaluminate-ferrite cement: AetherTM.” 13th Int. Congr. Chem. Cem., Madrid.
64. Gastaldi, D., Paul, G., Marchese, L., Irico, S., Boccaleri, E., Mutke, S., Buzzi, L., & Canonico, F. (2016). “Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR.” Cement and Concrete Research, Vol. 90, pp. 162–173.
65. Gazdič, D., Fridrichová, M., Kulísek, K., & Vehovská, L. (2017). “The Potential Use of the FBC Ash for the Preparation of Blended Cements.” Procedia Engineering, Vol. 180, pp. 1298–1305.
66. Ghafoori, N., Spitek, R., & Najimi, M. (2016). “Influence of limestone size and content on transport properties of self-consolidating concrete.” Construction and Building Materials, Vol. 127, pp. 588–595.
67. Gijbels, K., Nguyen, H., Kinnunen, P., Schroeyers, W., Pontikes, Y., Schreurs, S., & Illikainen, M. (2019). “Feasibility Of Incorporating Phosphogypsum In Ettringite-Based Binder From Ladle Slag.” Journal of Cleaner Production, 117793.
68. Gollop, R. S., & Taylor, H. F. W. (1992). “Microstructural and microanalytical studies of sulfate attack. I. Ordinary portland cement paste.” Cement and Concrete Research, Vol. 22(6), pp. 1027–1038.
69. Hanisková, D., Bartoníčková, E., Koplík, J., & Opravil, T. (2016). “The Ash from Fluidized Bed Combustion as a Donor of Sulfates to the Portland Clinker.” Procedia Engineering, Vol. 151, pp. 394–401.
70. Heinz, D. & Ludwig, U. (1987). “Mechanism of secondary ettringite formation in mortars and concretes subjected to heat treatment.” American Concrete Institute (ACI), Vol. 100, pp. 2059-2072.
71. Hime, W. G. (1996). “Delayed ettringnite formation–A concern for precast concrete.” PCI Journal, Vol. 41(4), pp. 26-30.
72. Horkoss, S., Escadeillas, G., Rizk, T., & Lteif, R. (2016). “The effect of the source of cement SO3 on the expansion of mortars.” Case Studies in Construction Materials, Vol. 4, pp. 62–72.
73. Horkoss, S., Lteif, R., & Rizk, T. (2011). “Influence of the clinker SO3 on the cement characteristics.” Cement and Concrete Research, Vol. 41(8), pp. 913–919.
74. Jackson, N.M., Mack, R., Schultz, S. & Malek, M. (2007), “Pavement Subgrade Stabilization and Construction Using Bed and Fly Ash.” World of Coal Ash (WOCA), Northern, KY, USA.
75. Jang, J. G., Park, S.-M., Chung, S., Ahn, J.-W., & Kim, H.-K. (2018). “Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator.” Construction and Building Materials, Vol. 159, pp. 642–651.
76. Ju, C., Liu, Y., Yu, Z., & Yang, Y. (2019). “Cement-Lime-Fly Ash Bound Macadam Pavement Base Material with Enhanced Early-Age Strength and Suppressed Drying Shrinkage via Incorporation of Slag and Gypsum.” Advances in Civil Engineering, Vol. 2019, pp. 1–10.
77. Katsioti, M., Patsikas, N., Pipilikaki, P., Katsiotis, N., Mikedi, K., & Chaniotakis, M. (2011). “Delayed ettringite formation (DEF) in mortars of white cement.” Construction and Building Materials, Vol. 25(2), pp. 900–905.
78. Kawabata, Y., Takahashi, H., & Watanabe, S. (2021). “The long-term suppression effects of fly ash and slag on the expansion of heat-cured mortar due to delayed ettringite formation.” Construction and Building Materials, Vol. 310, 125235.
79. Kennedy, D. E. (2017). Evaluation and development of a test method for delayed ettringite formation in mass concrete. Master’s thesis, University of Florida, USA.
80. Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). “Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag.” Cement and Concrete Research, Vol. 54, pp. 208–214.
81. Lee, H. K., Jeon, S.-M., Lee, B. Y., & Kim, H.-K. (2020). “Use of circulating fluidized bed combustion bottom ash as a secondary activator in high-volume slag cement.” Construction and Building Materials, Vol. 234, 117240.
82. Leklou, N., Aubert, J.-E., & Escadeillas, G. (2012). “Effect of wetting-drying cycles on mortar samples affected by DEF.” European Journal of Environmental and Civil Engineering, Vol. 16(5), pp. 582-588.
83. Lerch, W. & Ford, C. L. (1994), “Long-time study of cement performance in concrete.” American Concrete Institute (ACI), Proceedings, Vol. 44, pp. 743-795.
84. Li, X., Chen, Q., Ma, B., Huang, J., Jian, S., & Wu, B. (2012 A). “Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics.” Fuel, Vol. 102, pp. 674–680.
85. Li, Q., Xu, H., Li, F., Li, P., Shen, L., & Zhai, J. (2012 B). “Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes.” Fuel, Vol. 97, pp. 366–372.
86. Liu, S. H.; Yan, P. Y., (2008). “Action Mechanism of Limestone Powder in Hydration of Complex Binder.” Cement Engineering, Issue 6, pp. 6-8.
87. López, M. M., Pineda, Y., & Gutiérrez, O. (2015). “Evaluation of Durability and Mechanical Properties of the Cement Mortar Added with Slag Blast Furnace.” Procedia Materials Science, Vol. 9, pp. 367–376.
88. Łukowski, P., & Salih, A. (2015). “Durability of Mortars Containing Ground Granulated Blast-furnace Slag in Acid and Sulphate Environment.” Procedia Engineering, Vol. 108, pp. 47–54.
89. Luo, Y., Klima, K.M., Brouwers, H.J.H., & Yu, Q. L. (2022). “Effects of ladle slag on Class F fly ash geopolymer: Reaction mechanism and high temperature behavior.” Cement and Concrete Composites, Vol. 129, 104468.
90. Ma, K., Long, G., & Xie, Y. (2017). “A real case of steam-cured concrete track slab premature deterioration due to ASR and DEF.” Case Studies in Construction Materials, Vol. 6, pp. 63–71.
91. Ma, W., Liu, C., Brown, P. W., & Komarneni, S. (1995). “Pore structures of fly ashes activated by Ca(OH)2 and CaSO4·2H2O.” Cement and Concrete Research, Vol. 25(2), pp. 417–425.
92. Maciejewski, M., Oswald, H.-R., & Reller, A. (1994). “Thermal transformations of vaterite and calcite.” Thermochimica Acta, Vol. 234, pp. 315–328.
93. MacKenzie, K. J. D., Meinhold, R. H., Sherriff, B. L., & Xu, Z. (1993). “27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence.” Journal of Materials Chemistry, Vol. 3(12), pp. 1263-1269.
94. Mehta, P.K. (1986). Concrete structure properties and materials. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
95. Moranville-Regourd, M. (1998). “Cements Made from Blast Furnace Slag.” Lea′s Chemistry of Cement and Concrete, Arnold, London, pp. 633–674.
96. Nguyen, T. N., Lee, D. H., & Kim, J. J. (2020). “Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste.” Applied Sciences, Vol. 10(21), 7504.
97. Nguyen, V. H., Leklou, N., (2013). “The effect of natural pozzolan on delayed ettringite formation of the heat-cured mortars.” Construction and Building Materials, Vol. 48, pp. 479-484.
98. Pinto, S. R., Angulski da Luz, C., Munhoz, G. S., & Medeiros-Junior, R. A. (2020). “Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate.” Cement and Concrete Research, Vol. 136, 106172.
99. Poon, C. S., Kou, S. C., Lam, L., & Lin, Z. S. (2001). “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4).” Cement and Concrete Research, Vol. 31(6), pp. 873–881.
100. Qin, H., Liu, X., & Li, G. (2012). “Preparation and properties of desulfurization gypsum-slag hydraulic cementitious materials.” Procedia Engineering, Vol. 27, pp. 244–252.
101. Qoku, E., Bier, T. A., & Westphal, T. (2017). “Phase assemblage in ettringite-forming cement pastes: A X-ray diffraction and thermal analysis characterization.” Journal of Building Engineering, Vol. 12, pp. 37-50.
102. Day, L. R.(1992). “The Effect of Secondary Ettringite Formation on the Durability of Concrete: A Literature Analysis” Portland Cement Association, Illinois, USA
103. Rashad, A.M. (2013). “Properties of alkali-activated fly ash concrete blended with slag.” Iranian Journal of Materials Science & Engineering, Vol. 10(1), pp. 57-64.
104. Ronne, M. & Hammer, T. A. (1999). “Delayed ettringite formation (DEF) in structural lightweight aggregate concrete: effect of curing temperature, moisture, and silica fume content.” Cement, Concrete, and Aggregates, Vol. 21(2), pp. 202-211.
105. Sahu, S., & Thaulow, N. (2004). “Delayed ettringite formation in Swedish concrete railroad ties.” Cement and Concrete Research, Vol. 34(9), pp. 1675–1681.
106. Sha, W. (2002). “Differential scanning calorimetry study of the hydration products in portland cement pastes with metakaolin replacement.” Advances in Building Technology, pp. 881–888.
107. Sha, W., & Pereira, G. B. (2001). “Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag.” Cement and Concrete Research, Vol. 31(2), pp. 327–329.
108. Sheng, G.H., Li,Q., Zhai, J., & Li, F. (2007). “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke.” Cement and Concrete Research, Vol. 37, pp. 871-876.
109. Sheng, G.H., Li,Q., Zhai, J.P., Li, Q., Li, F. (2007). “Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement.” Fuel, Vol. 86, pp. 2625-2531.
110. Shon, C.-S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., & Mejeoumov, G. G. (2010). “Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture.” Construction and Building Materials, Vol. 24(5), pp. 839–847.
111. Shon, C.-S., Saylak, D., & Zollinger, D. G. (2009). “Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks.” Construction and Building Materials, Vol. 23(5), pp. 2062–2071.
112. Sievert, T., Wolter, A., & Singh, N. B. (2005). “Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill.” Cement and Concrete Research, Vol. 35(4), pp. 623–630.
113. Sotiriadis, K., Nikolopoulou, E., & Tsivilis, S. (2012). “Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature.” Cement and Concrete Composites, Vol. 34(8), pp. 903–910.
114. Stark, J., & Bollmann, K. (2000). “Delayed ettringite formation in concrete.” Nordic Concrete Research-Publications, Vol. 23, pp. 4-28.
115. Taylor, H. F. (1997). Cement chemistry. Thomas Telford.
116. Taylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). “Delayed ettringite formation.” Cement and Concrete Research, Vol. 31(5), pp. 683-693.
117. Tosun, K. (2006). “Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars.” Cement and Concrete Composites, Vol. 28(9), pp. 761–772.
118. Turchin, V., Yudina, L., & Sattarova, A. (2013). “Research Sulfate Resistance of Cement-Containing Composition.” Procedia Engineering, Vol. 57, pp. 1166–1172.
119. Vimmrová, A., Krejsová, J., Scheinherrová, L., Doleželová, M., & Keppert, M. (2020). “Changes in structure and composition of gypsum paste at elevated temperatures.” Journal of Thermal Analysis and Calorimetry, Vol. 142(1), pp. 19–28.
120. Wang, S.-D., & Scrivener, K. L. (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, Vol. 25(3), pp. 561–571.
121. Wei, X. L., Ni, W., Zhang, S. Q., Wang, X., Li, J. J., Du, H. H. (2022). “Influence of the key factors on the performance of steel slag - desulphurisation gypsum - based hydration - carbonation materials.” Journal of Building Engineering, Vol. 45, 103591.
122. Wei, Y., Yao, W., Xing, X., & Wu, M. (2012). “Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27Al MAS NMR, TG–DSC and selective dissolution techniques.” Construction and Building Materials, Vol. 36, pp. 925–932.
123. Wu, T., Chi, M., & Huang, R. (2014). “Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash.” Construction and Building Materials, Vol. 66, pp. 172–180.
124. Xu, Aimin., Sarkar, S. L. (1991). “Microstructural study of gypsum activated fly ash hydration in cement paste.” Cement and Concrete Research, Vol. 21(6), pp. 1137–1147.
125. Yan, B., Kouame, K. J. A., Lv, W., Yang, P., & Cai, M. (2019). “Modification and in-place mechanical characteristics research on cement mortar with fly ash and lime compound admixture in high chlorine environment.” Journal of Materials Research and Technology. Vol. 8(1), pp. 1451-1460.
126. Young, J. F. , Mindess, S. & Darwin, D. (2002), Concrete. Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
127. Zeng, H., Li, Y., Zhang, J., Chong, P. Y., Zhang, K. (2022). “Effect of limestone powder and fly ash on the pH evolution coefficient of concrete in a sulfate-freeze–thaw environment.” Journal of Materials Research and Technology, Vol. 16, pp. 1889-1903.
128. Zhang, W., Choi, H., Sagawa, T., & Hama, Y. (2017). “Compressive strength development and durability of an environmental load-reduction material manufactured using circulating fluidized bed ash and blast-furnace slag.” Construction and Building Materials, Vol. 146, pp. 102–113.
129. Zhang, Z., Qian, J., You, C., & Hu, C. (2012). “Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick.” Construction and Building Materials, Vol. 35, pp. 109–116.
|