博碩士論文 100382005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.147.126.146
姓名 陳冠宇(Guan-Yu Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 CFB鍋爐燃石油焦脫硫飛灰活化水淬爐石粉漿體之水化及硫酸鹽侵蝕微觀研究
(Microscopic study on hydration and sulfate attack of blast furnace slag cementitious paste activated by the desulfurization fly ash obtained from CFB boiler firing petroleum coke)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以循環式流體化床鍋爐燃石油焦脫硫飛灰(CFB脫硫飛灰)作為激發水淬爐石粉卜作嵐反應之輔助膠結材料,依照規劃之摻配比例及混合少量水泥製作純漿試體,透過電子顯微鏡(SEM)、X光繞射分析(XRD)、熱重分析(TG/DTG)等觀察漿體在不同齡期下形成的水化產物種類與微觀結構發展;此外,由於CFB脫硫飛灰材料中有較高含量的SO3與free-CaO等容易形成硫酸鹽反應之化合物,因此分別依據ASTM C1012進行「外部硫酸鹽侵蝕」試驗及ASTM C1038進行「內部硫酸鹽侵蝕」試驗,針對受硫酸鹽侵襲之漿體進行微觀分析。
  水化反應調查結果顯示CFB脫硫飛灰活化爐石粉漿體之水化產物以鈣礬石(AFt)發展為主體,與脫硫飛灰摻配比例正相關;而Ca(OH)2形成則主要受水泥摻配影響;二水石膏僅在水化初期少量形成,未被消耗之硫酸鹽仍以硫酸鈣(CaSO4)型態留存。在水化發展上,較低的脫硫飛灰摻配量會使晚期強度與水化產物發展受到限制,較高的摻配量(≥30%)則會導致早期發展相對緩慢,但水化後期反應則較為活躍;而水泥的摻配能夠形成充足的C-S-H膠體來協助鈣礬石填補孔隙,使微觀結構的緻密程度更佳。
  外部硫酸鹽侵蝕部分,SEM觀察結果顯示劣化區域主要在漿體表面與近表面之孔隙及裂縫處,反應產物為Ca(OH)2、CaCO3與部分的二水石膏結晶,並且摻配部分水泥時會導致外部硫酸鹽侵蝕之反應程度較為顯著;而漿體內部雖有少量的二次鈣礬石反應結晶形成,但對其原有孔隙結構並無明顯劣化和侵蝕之跡象。
  而在內部硫酸鹽侵蝕作用影響下,漿體從表面至內部之孔隙均有明顯的侵蝕跡象且形成大量高S/Ca比的延遲性鈣礬石大型結晶,造成微觀結構之劣化與水化產物的降解與破壞;劣化程度隨脫硫飛灰摻配用量增加而加劇,而適量摻配水泥則有助於提升漿體緻密性,從而減少劣化深度和延遲性鈣礬石的形成。
  透過比較各項微觀分析結果,顯示對於脫硫飛灰活化爐石粉漿體而言,內部硫酸鹽侵蝕問題明顯比外部硫酸鹽侵蝕之影響更為嚴重、更具破壞性,因此需要合理控制脫硫飛灰之摻配用量,避免影響硬固結構的穩定性。
摘要(英) In this study, the desulfurization fly ash obtained from circulating fluidized bed boiler firing petroleum coke (CFB desulfurization fly ash) was used as a supplementary binder material to activate ground granulated blast furnace slag (BFS) for use in concrete. Specimens were made according to the planned blending ratio with a small amount of Portland cement. The hydration products and microstructural development of paste specimen at different ages were observed by scanning electron microscopy (SEM), X-ray Diffraction (XRD), and thermal gravimetric/derivative thermogravimetric (TG/DTG) analysis. Since the high content of SO3 and free-CaO in the CFB desulfurization fly ash can easily form sulfate reaction compounds, the external sulfate attack test was conducted according to ASTM C1012 and the internal sulfate attack test was conducted according to ASTM C1038 on mortar specimens. Then, microscopic analysis was carried out on the paste specimens subjected to sulfate attack.
  The results of the hydration investigation show that the hydration products of CFB desulfurization fly ash activated BFS paste were dominated by ettringite (AFt) development and positively correlated with the proportion of CFB desulfurization fly ash in the blends. The formation of Ca(OH)2 is mainly related to cement blending. Gypsum is formed in a small amount at the early stage of hydration only. And the non-consumed sulfate remains in the form of anhydrite (CaSO4).
  In the development of hydration, a lower proportion of CFB desulfurization fly ash blending will limit the development of late compressive strength and hydration products, while a higher proportion of blending (≥ 30%) will lead to a relatively slow development in the early ages, accompanied by a more active reaction in the later age of hydration. The blending of cement in the mixture helps produce sufficient C-S-H gel to assist ettringite in filling the pores, resulting in a better denseness of the microstructure.
  In the external sulfate attack test, SEM observation results show that the degraded area is mainly in the pores and cracks on and near the surface of the paste specimen. The reaction products are Ca(OH)2, CaCO3 and some gypsum crystals. The blending of cement will cause more significant external sulfate attack reaction. Although there is a small amount of secondary ettringite formation inside the paste, but there is no obvious signs of degradation or erosion of the original pore structure.
  Under the influence of internal sulfate attack, the paste specimen shows obvious signs of erosion reaction from surface to internal pores and a large amount of delayed ettringite formation (DEF) with high S/Ca ratio, resulting in microstructural deterioration and degradation of hydration products. the degree of deterioration increases with the amount of CFB desulfurization fly ash in the blend. A suitable amount of cement blending helps to enhance the denseness of the paste, thus reducing the depth of deterioration and the formation of delayed ettringite.
  By comparing the microscopic analysis results, it is shown that for CFB desulfurization fly ash activated BFS paste, the internal sulfate attack is obviously more serious and destructive than the external sulfate attack. Therefore, it is necessary to reasonably control the proportion of CFB desulfurization fly ash in the mixture to avoid affecting the stability of the hardened structure.
關鍵字(中) ★ CFB脫硫飛灰
★ 外部硫酸鹽侵蝕
★ 內部硫酸鹽侵蝕
★ 延遲性鈣礬石形成
關鍵字(英) ★ CFB desulfurization fly ash
★ External sulfate attack
★ Internal sulfate attack
★ Delayed ettringite formation
論文目次 摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xvi
第一章、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究內容 3
第二章、文獻回顧 5
2.1 循環式流體化床鍋爐系統及脫硫副產物 5
2.1.1 循環式流體化床鍋爐 5
2.1.2 循環式流體化床鍋爐脫硫灰種類及成分 7
2.1.3 CFB脫硫飛灰成分特性 8
2.2 CFB脫硫飛灰之國內外研究案例及相關應用 11
2.2.1 國外相關研究及工程應用 11
2.2.2 國內文獻與研究報告 13
2.3 混凝土膠結材料之水化 19
2.3.1 卜特蘭水泥之水化反應 19
2.3.2 水淬高爐石粉來源與水化反應特性 20
2.3.3 其他混合材料及水化反應 22
2.3.4 CFB燃石油焦脫硫飛灰活化爐石粉之水化觀察 29
2.4 外部硫酸鹽侵蝕 (ESA) 33
2.4.1外部硫酸鹽侵蝕對砂漿/混凝土之影響 33
2.4.2 CFB脫硫飛灰混合膠結材料受外部硫酸鹽侵蝕之研究 36
2.5 內部硫酸鹽侵蝕 (ISA) 44
2.5.1 內部硫酸鹽侵蝕對砂漿/混凝土之影響 44
2.5.2 CFB脫硫飛灰混合膠結材料受內部硫酸鹽侵蝕之研究 60
第三章、研究材料及試驗規劃 66
3.1 試驗材料 66
3.2 試驗儀器及相關設備 71
3.3試驗內容及方法 74
3.3.1 試驗配比規劃 74
3.3.2 主要試驗內容及流程規劃 76
3.3.3 試驗方法 79
第四章、CFB脫硫飛灰水化及活化爐石粉漿體水化之微觀調查與分析 82
4.1 X光繞射分析(X-ray Diffraction, XRD) 83
4.1.1 CFB脫硫飛灰 83
4.1.2 脫硫飛灰活化爐石粉水化漿體 84
4.2 熱重分析(Thermal Gravimetric, TG) 92
4.2.1 CFB脫硫飛灰 92
4.2.2 脫硫飛灰活化爐石粉水化漿體 97
4.3 電子顯微觀察(Scanning Electron Microscope, SEM) 111
4.3.1 CFB脫硫飛灰 111
4.3.2脫硫飛灰活化爐石粉水化漿體 119
4.3.3 硬固水化漿體微觀結構比較 143
第五章、外在及內部硫酸鹽影響效應之微觀探討 147
5.1 外部硫酸鹽侵蝕對CFB/BFS膠結漿體影響之微觀調查與分析 147
5.1.1 電子顯微觀察 (SEM/EDS) 148
5.1.2 X光繞射分析 (XRD) 176
5.1.3 熱重分析 (TG/DTG) 181
5.2 內部硫酸鹽侵蝕對CFB/BFS膠結漿體影響之微觀調查與分析 194
5.2.1 電子顯微觀察 (SEM/EDS) 194
5.2.2 X光繞射分析 (XRD) 217
5.2.3熱重分析 (TG/DTG) 223
5.3 ESA與ISA對CFB/BFS膠結系統影響之差異對比 236
5.3.1 電子顯微觀察(SEM/EDS) 對比分析 236
5.3.2 X光繞射分析(XRD) 對比分析 244
5.3.3 熱重分析(TG/DTG) 對比分析 247
第六章、結論與建議 250
6.1 結論 250
6.1.1 水化微觀調查分析 250
6.1.2 外部與內部硫酸鹽侵蝕調查 251
6.1.3 ESA與ISA對膠結系統影響之差異 252
6.2 建議 252
參考文獻 254
參考文獻 1. 王昱智,「副產石灰為混凝土膠結材料之配比與特性研究」,國立中央大學土木工程研究所,碩士論文,2008。
2. 王怡翔,「添加循環式流體化床飛灰及水淬高爐石粉對於混凝土性質影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2013。
3. 白冷、彭家惠、張建新、萬體智,「天然硬石膏水化硬化研究」,非金屬礦物學刊(中國),第31卷,第4期,2008。
4. 朱學德,「添加循環式流體化床混燒飛灰及粉煤飛灰對於水泥質複合材料性能影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2015。
5. 吳羽帆,「水化早期溫度對延遲性鈣礬石形成之影響」,國立中央大學土木工程學系,碩士論文,2014。
6. 吳俊澔,「抑制副產石灰掺合水淬爐石粉的膨脹及緩凝行為之探討」,國立中央大學土木工程研究所,碩士論文,2014。
7. 汪翊鐙,「CFB副產石灰掺配爐石粉製作混凝土成效研究」,國立中央大學土木工程研究所,碩士論文,2009。
8. 阮王英 (Nguyen Hoang Anh),「三相再生工業副產品無水泥生態膠結材之自充填混凝土工程性質與耐久性」,國立臺灣科技大學營建工程系,博士學位論文,2016。
9. 林庭佑,「使用CFBC灰對於水泥基複合材料抗硫酸鹽性能之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2013。
10. 林耘丞,「添加循環式流體化床飛灰及粉煤飛灰對於混凝土性質影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2013。
11. 徐永翰,「水化副產石灰應用於軟弱土壤改良之研究」,國立中央大學土木工程學系,碩士論文,2013。
12. 徐仲豪,「添加強塑劑對CFB副產石灰-水淬爐石粉膠結系統工作性影響之研究」,國立中央大學土木工程研究所,碩士論文,2015。
13. 徐錚,「循環流化床脫硫灰渣的性能和應用研究」,亞洲環保雜誌(中國),2011。
14. 翁世昌,「以副產石灰作為回填材料之研究」,國立成功大學土木工程學系,碩士論文,2011。
15. 翁和德,「循環式流體化床鍋爐技術」,化工技術學刊,第6卷,第9期,第180-193頁,1998。
16. 馬逸群,「添加循環式流化床飛灰及水淬高爐石粉、粉煤灰對水泥砂漿特性影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2015。
17. 張士晉,「掺CFB副產石灰之鹼激發飛灰膠凝材料工程性質之研究」,國立成功大學土木工程學系,碩士論文,2009。
18. 張大鵬、Anne Thymotie、Anthony Iskandar、Fifi Hartanto、楊巧薇、盧偉峻、廖培桐、吳佳穎,「混合脫硫飛灰生態水泥混凝土產製與工程性質之研究」,中華民國國家科學及技術委員會,科技部補助專題研究計畫成果報告,2017。
19. 張文瑋,「以副產石灰作為膠結材料之初步研究」,國立成功大學土木工程學系,碩士論文,2010。
20. 張峻閡,「CFBC飛灰作為鹼激發劑與標準之符合度及混凝土性質研究」,國立交通大學土木工程研究所,碩士論文,2013
21. 張曉佳,「弱鹼環境下硫酸鹽侵蝕水泥石中C-S-H凝膠結構的形成與演變」,安徽建築大學(中國),碩士論文,2019。
22. 郭祐豪,「綠色無水泥混凝土工程性質之研究」,國立臺灣科技大學營建工程系,碩士論文,2015。
23. 陳冠宇,「不同型態之CFB副產石灰應用於混凝土之研究」,國立中央大學土木工程研究所,碩士論文,2011。
24. 陳冠宇、林瑛璽、林智揚、黃偉慶,「以CFB脫硫飛灰活化爐石粉應用於混凝土之成效研究」,鋪面工程,第11卷,第2期,第17-24頁,2013。
25. 陳冠宇、翁榮聖、黃偉慶,「脫硫灰渣應用於混凝土之成效研究」,鋪面工程,第9卷,第4期,第65-74頁,2011。
26. 陳致仰,「飛灰含量對無水泥生態混凝土耐久性質之效應」,國立臺灣科技大學營建工程系,碩士論文,2016。
27. 陳韋嘉,「添加爐石粉對混凝土抗壓強度及滲透行為之探討」,國立臺灣海洋大學河海工程學系,碩士論文,2005。
28. 陳義中,「循環式流化床燃燒飛灰應用於混凝土特性之研究」,國立宜蘭大學建築與永續規畫研究所,碩士論文,2011。
29. 黃兆龍,「混凝土性質與行為」,詹氏書局,1999。
30. 黃偉慶、潘奕銘、廖小媛、王昱智、汪翊鐙,「CFB副產石灰摻配爐石粉製作混凝土成效研究」總結報告,2010。
31. 黃偉慶、陳冠宇、翁榮聖、徐永翰,「充分應用 CFB 脫硫飛灰製作混凝土之配方研究」,台塑石化股份有限公司煉油事業部委託研究計畫總結報告,2012。
32. 黃從源,「三相生態混凝土工程性質之研究」,國立臺灣科技大學營建工程系,碩士論文,2014。
33. 黃暉淇,「循環式流化床燃燒飛灰應用於水泥質複合材料之機理與特性研究」,國立臺灣海洋大學材料工程研究所,碩士論文,2008。
34. 楊舒予,「以CFB副產石灰作為水淬爐石粉激發劑之可行性探討」,國立中央大學土木工程研究所,碩士論文,2013。
35. 劉數華、閻培渝,「石灰石粉在複合膠凝材料水化中的作用機理」,水泥工程(中國),第六期,第6-8頁,2008。
36. 鄧德華、肖佳、元強、劉贊群、張文恩,「石灰石粉對水泥基材料抗硫酸鹽侵蝕性的影響及其機理」,矽酸鹽學報(中國),第34卷,第10期,2006。
37. 蕭李仁,「添加循環式流體化床飛灰及水淬高爐石粉、粉煤飛灰對混凝土耐久性與微觀特性影響之研究」,國立臺灣海洋大學河海工程學系,碩士論文,2014。
38. 蕭定群,「副產石灰配合再生粒料製作無水泥混凝土可行性評估」,國立中央大學土木工程研究所,碩士論文,2010。
39. 錢覺時、鄭洪傳、王智、宋遠明、楊娟,「流化床燃煤固硫灰碴活性評定方法」,煤炭學報,第31卷,第4期,第506-510頁,2006。
40. 譚桂榮、吳秀俊,「CFB脫硫灰渣的性能及應用研究」,粉煤灰綜合利用(中國),中國,2009。
41. 黨輝,王洪昇,黃紅,楊愛麗,「循環流化床脫硫灰渣的特性及應用初探」,環保技術(中國),2004。
42. Amine, Y., Leklou, N., & Amiri, O. (2017). “Effect of supplementary cementitious materials (scm) on delayed ettringite formation in heat-cured concretes.” Energy Procedia, Vol. 139, pp. 565–570.
43. Bakolas, A., Aggelakopoulou, E., Moropoulou, A., & Anagnostopoulou, S. (2006). “Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes.” Journal of Thermal Analysis and Calorimetry, Vol. 84(1), pp. 157–163.
44. Barbarulo, R., Peycelon, H., & Leclercq, S. (2007). “Chemical equilibria between C–S–H and ettringite, at 20 and 85°C.” Cement and Concrete Research, Vol. 37(8), pp. 1176–1181.
45. Batic, O. R., Milanesi, C. A., Maiza, P. J., & Marfil, S. A. (2000). “Secondary ettringite formation in concrete subjected to different curing conditions.” Cement and Concrete Research, Vol. 30(9), pp. 1407–1412.
46. Bellmann, F., & Stark, J. (2009). “Activation of blast furnace slag by a new method.” Cement and Concrete Research, Vol. 39(8), pp. 644–650.
47. Ben Haha, M., Le Saout, G., Winnefeld, F., & Lothenbach, B. (2011). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cement and Concrete Research, Vol. 41(3), pp. 301–310.
48. Burroughs, J. F., Shannon, J., Rushing, T. S., Yi, K., Gutierrez, Q. B., & Harrelson, D. W. (2017). “Potential of finely ground limestone powder to benefit ultra-high performance concrete mixtures.” Construction and Building Materials, Vol. 141, pp. 335–342.
49. Chi, M., Liu, Y., Huang, R. (2015). “Mechanical and microstructural characterization of alkali-activated materials based on fly ash and slag.” IACSIT International Journal of Engineering and Technology, Vol. 7(1), pp. 59-64.
50. Collepardi, M. (1999). “Damage by Delayed Ettringite Formation.” American Concrete Institute (ACI), Vol. 21(1), pp. 69-74.
51. Collepardi, M. (2003). “A state-of-the-art review on delayed ettringite attack on concrete.” Cement and Concrete Composites, Vol. 25(4-5), pp. 401–407.
52. Dayarathne, W. H. R. S., Galappaththi, G. S., Perera, K. E. S., & Nanayakkara S. M. A. (2013). “Evaluation of the potential for delayed ettringite formation in concrete”. in National engineering conference 2013, pp. 59-66.
53. Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). “Effects of sulfate on cement mortar with hybrid pozzolan substitution.” Engineering Science and Technology, an International Journal, Vol. 21(3), pp. 275–283.
54. Ekolu, S. O., Thomas, M. D. A., & Hooton, R. D. (2006). “Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism.” Cement and Concrete Research, Vol. 36(4), pp. 688–696.
55. El-Hachem, R., Rozière, E., Grondin, F., & Loukili, A. (2012). “Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack.” Cement and Concrete Research, Vol. 42(10), pp. 1327–1335.
56. Escadeillas, G., Aubert, J. E., Segerer, M., & Prince, W., “Some factors affecting delayed ettringite formation in heat-cured mortars.” Cement and Concrete Research, Vol. 37 (10), pp. 1445-1452, (2007).
57. Famy, C., Scrivener, K. ., Atkinson, A., & Brough, A. . (2001). “Influence of the storage conditions on the dimensional changes of heat-cured mortars.” Cement and Concrete Research, Vol. 31(5), pp. 795–803.
58. Famy, C., Scrivener, K. ., Atkinson, A., & Brough, A. (2002). “Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars.” Cement and Concrete Research, Vol. 32(2), pp. 269–278.
59. Fu, Y., & Beaudoin, J. J. (1996). “Microcracking as a precursor to delayed ettringite formation in cement systems.” Cement and Concrete Research, Vol. 26 (10), pp. 1493-1498.
60. Fu, Y., Ding, J., & Beaudoin, J. J. (1997). “Expansion of portland cement mortar due to internal sulfate attack.” Cement and Concrete Research, Vol. 27( 9), pp. 1299-1306
61. Gabrisová, A., Havlica, J., & Sahu, S. (1991). “Stability of calcium sulphoaluminate hydrates in water solutions with various pH values.” Cement and Concrete Research, Vol. 21(6), pp. 1023–1027.
62. Gao, D., Che, Q., Meng, Y., Yang, L., & Xie, X. (2022). “Properties evolution of calcium sulfoaluminate cement blended with ground granulated blast furnace slag suffered from sulfate attack.” Journal of Materials Research and Technology, Vol. 17, pp. 1642-1651.
63. Gartner, E., Walenta, G., Morin, V., Termkhajornkit, P., Baco, I., & Casabonne, J. M. (2011). “Hydration of a belite-calciumsulfoaluminate-ferrite cement: AetherTM.” 13th Int. Congr. Chem. Cem., Madrid.
64. Gastaldi, D., Paul, G., Marchese, L., Irico, S., Boccaleri, E., Mutke, S., Buzzi, L., & Canonico, F. (2016). “Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR.” Cement and Concrete Research, Vol. 90, pp. 162–173.
65. Gazdič, D., Fridrichová, M., Kulísek, K., & Vehovská, L. (2017). “The Potential Use of the FBC Ash for the Preparation of Blended Cements.” Procedia Engineering, Vol. 180, pp. 1298–1305.
66. Ghafoori, N., Spitek, R., & Najimi, M. (2016). “Influence of limestone size and content on transport properties of self-consolidating concrete.” Construction and Building Materials, Vol. 127, pp. 588–595.
67. Gijbels, K., Nguyen, H., Kinnunen, P., Schroeyers, W., Pontikes, Y., Schreurs, S., & Illikainen, M. (2019). “Feasibility Of Incorporating Phosphogypsum In Ettringite-Based Binder From Ladle Slag.” Journal of Cleaner Production, 117793.
68. Gollop, R. S., & Taylor, H. F. W. (1992). “Microstructural and microanalytical studies of sulfate attack. I. Ordinary portland cement paste.” Cement and Concrete Research, Vol. 22(6), pp. 1027–1038.
69. Hanisková, D., Bartoníčková, E., Koplík, J., & Opravil, T. (2016). “The Ash from Fluidized Bed Combustion as a Donor of Sulfates to the Portland Clinker.” Procedia Engineering, Vol. 151, pp. 394–401.
70. Heinz, D. & Ludwig, U. (1987). “Mechanism of secondary ettringite formation in mortars and concretes subjected to heat treatment.” American Concrete Institute (ACI), Vol. 100, pp. 2059-2072.
71. Hime, W. G. (1996). “Delayed ettringnite formation–A concern for precast concrete.” PCI Journal, Vol. 41(4), pp. 26-30.
72. Horkoss, S., Escadeillas, G., Rizk, T., & Lteif, R. (2016). “The effect of the source of cement SO3 on the expansion of mortars.” Case Studies in Construction Materials, Vol. 4, pp. 62–72.
73. Horkoss, S., Lteif, R., & Rizk, T. (2011). “Influence of the clinker SO3 on the cement characteristics.” Cement and Concrete Research, Vol. 41(8), pp. 913–919.
74. Jackson, N.M., Mack, R., Schultz, S. & Malek, M. (2007), “Pavement Subgrade Stabilization and Construction Using Bed and Fly Ash.” World of Coal Ash (WOCA), Northern, KY, USA.
75. Jang, J. G., Park, S.-M., Chung, S., Ahn, J.-W., & Kim, H.-K. (2018). “Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator.” Construction and Building Materials, Vol. 159, pp. 642–651.
76. Ju, C., Liu, Y., Yu, Z., & Yang, Y. (2019). “Cement-Lime-Fly Ash Bound Macadam Pavement Base Material with Enhanced Early-Age Strength and Suppressed Drying Shrinkage via Incorporation of Slag and Gypsum.” Advances in Civil Engineering, Vol. 2019, pp. 1–10.
77. Katsioti, M., Patsikas, N., Pipilikaki, P., Katsiotis, N., Mikedi, K., & Chaniotakis, M. (2011). “Delayed ettringite formation (DEF) in mortars of white cement.” Construction and Building Materials, Vol. 25(2), pp. 900–905.
78. Kawabata, Y., Takahashi, H., & Watanabe, S. (2021). “The long-term suppression effects of fly ash and slag on the expansion of heat-cured mortar due to delayed ettringite formation.” Construction and Building Materials, Vol. 310, 125235.
79. Kennedy, D. E. (2017). Evaluation and development of a test method for delayed ettringite formation in mass concrete. Master’s thesis, University of Florida, USA.
80. Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). “Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag.” Cement and Concrete Research, Vol. 54, pp. 208–214.
81. Lee, H. K., Jeon, S.-M., Lee, B. Y., & Kim, H.-K. (2020). “Use of circulating fluidized bed combustion bottom ash as a secondary activator in high-volume slag cement.” Construction and Building Materials, Vol. 234, 117240.
82. Leklou, N., Aubert, J.-E., & Escadeillas, G. (2012). “Effect of wetting-drying cycles on mortar samples affected by DEF.” European Journal of Environmental and Civil Engineering, Vol. 16(5), pp. 582-588.
83. Lerch, W. & Ford, C. L. (1994), “Long-time study of cement performance in concrete.” American Concrete Institute (ACI), Proceedings, Vol. 44, pp. 743-795.
84. Li, X., Chen, Q., Ma, B., Huang, J., Jian, S., & Wu, B. (2012 A). “Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics.” Fuel, Vol. 102, pp. 674–680.
85. Li, Q., Xu, H., Li, F., Li, P., Shen, L., & Zhai, J. (2012 B). “Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes.” Fuel, Vol. 97, pp. 366–372.
86. Liu, S. H.; Yan, P. Y., (2008). “Action Mechanism of Limestone Powder in Hydration of Complex Binder.” Cement Engineering, Issue 6, pp. 6-8.
87. López, M. M., Pineda, Y., & Gutiérrez, O. (2015). “Evaluation of Durability and Mechanical Properties of the Cement Mortar Added with Slag Blast Furnace.” Procedia Materials Science, Vol. 9, pp. 367–376.
88. Łukowski, P., & Salih, A. (2015). “Durability of Mortars Containing Ground Granulated Blast-furnace Slag in Acid and Sulphate Environment.” Procedia Engineering, Vol. 108, pp. 47–54.
89. Luo, Y., Klima, K.M., Brouwers, H.J.H., & Yu, Q. L. (2022). “Effects of ladle slag on Class F fly ash geopolymer: Reaction mechanism and high temperature behavior.” Cement and Concrete Composites, Vol. 129, 104468.
90. Ma, K., Long, G., & Xie, Y. (2017). “A real case of steam-cured concrete track slab premature deterioration due to ASR and DEF.” Case Studies in Construction Materials, Vol. 6, pp. 63–71.
91. Ma, W., Liu, C., Brown, P. W., & Komarneni, S. (1995). “Pore structures of fly ashes activated by Ca(OH)2 and CaSO4·2H2O.” Cement and Concrete Research, Vol. 25(2), pp. 417–425.
92. Maciejewski, M., Oswald, H.-R., & Reller, A. (1994). “Thermal transformations of vaterite and calcite.” Thermochimica Acta, Vol. 234, pp. 315–328.
93. MacKenzie, K. J. D., Meinhold, R. H., Sherriff, B. L., & Xu, Z. (1993). “27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence.” Journal of Materials Chemistry, Vol. 3(12), pp. 1263-1269.
94. Mehta, P.K. (1986). Concrete structure properties and materials. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
95. Moranville-Regourd, M. (1998). “Cements Made from Blast Furnace Slag.” Lea′s Chemistry of Cement and Concrete, Arnold, London, pp. 633–674.
96. Nguyen, T. N., Lee, D. H., & Kim, J. J. (2020). “Effect of Electrospun Nanofiber Additive on Selected Mechanical Properties of Hardened Cement Paste.” Applied Sciences, Vol. 10(21), 7504.
97. Nguyen, V. H., Leklou, N., (2013). “The effect of natural pozzolan on delayed ettringite formation of the heat-cured mortars.” Construction and Building Materials, Vol. 48, pp. 479-484.
98. Pinto, S. R., Angulski da Luz, C., Munhoz, G. S., & Medeiros-Junior, R. A. (2020). “Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate.” Cement and Concrete Research, Vol. 136, 106172.
99. Poon, C. S., Kou, S. C., Lam, L., & Lin, Z. S. (2001). “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4).” Cement and Concrete Research, Vol. 31(6), pp. 873–881.
100. Qin, H., Liu, X., & Li, G. (2012). “Preparation and properties of desulfurization gypsum-slag hydraulic cementitious materials.” Procedia Engineering, Vol. 27, pp. 244–252.
101. Qoku, E., Bier, T. A., & Westphal, T. (2017). “Phase assemblage in ettringite-forming cement pastes: A X-ray diffraction and thermal analysis characterization.” Journal of Building Engineering, Vol. 12, pp. 37-50.
102. Day, L. R.(1992). “The Effect of Secondary Ettringite Formation on the Durability of Concrete: A Literature Analysis” Portland Cement Association, Illinois, USA
103. Rashad, A.M. (2013). “Properties of alkali-activated fly ash concrete blended with slag.” Iranian Journal of Materials Science & Engineering, Vol. 10(1), pp. 57-64.
104. Ronne, M. & Hammer, T. A. (1999). “Delayed ettringite formation (DEF) in structural lightweight aggregate concrete: effect of curing temperature, moisture, and silica fume content.” Cement, Concrete, and Aggregates, Vol. 21(2), pp. 202-211.
105. Sahu, S., & Thaulow, N. (2004). “Delayed ettringite formation in Swedish concrete railroad ties.” Cement and Concrete Research, Vol. 34(9), pp. 1675–1681.
106. Sha, W. (2002). “Differential scanning calorimetry study of the hydration products in portland cement pastes with metakaolin replacement.” Advances in Building Technology, pp. 881–888.
107. Sha, W., & Pereira, G. B. (2001). “Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag.” Cement and Concrete Research, Vol. 31(2), pp. 327–329.
108. Sheng, G.H., Li,Q., Zhai, J., & Li, F. (2007). “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke.” Cement and Concrete Research, Vol. 37, pp. 871-876.
109. Sheng, G.H., Li,Q., Zhai, J.P., Li, Q., Li, F. (2007). “Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement.” Fuel, Vol. 86, pp. 2625-2531.
110. Shon, C.-S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., & Mejeoumov, G. G. (2010). “Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture.” Construction and Building Materials, Vol. 24(5), pp. 839–847.
111. Shon, C.-S., Saylak, D., & Zollinger, D. G. (2009). “Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks.” Construction and Building Materials, Vol. 23(5), pp. 2062–2071.
112. Sievert, T., Wolter, A., & Singh, N. B. (2005). “Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill.” Cement and Concrete Research, Vol. 35(4), pp. 623–630.
113. Sotiriadis, K., Nikolopoulou, E., & Tsivilis, S. (2012). “Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature.” Cement and Concrete Composites, Vol. 34(8), pp. 903–910.
114. Stark, J., & Bollmann, K. (2000). “Delayed ettringite formation in concrete.” Nordic Concrete Research-Publications, Vol. 23, pp. 4-28.
115. Taylor, H. F. (1997). Cement chemistry. Thomas Telford.
116. Taylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). “Delayed ettringite formation.” Cement and Concrete Research, Vol. 31(5), pp. 683-693.
117. Tosun, K. (2006). “Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars.” Cement and Concrete Composites, Vol. 28(9), pp. 761–772.
118. Turchin, V., Yudina, L., & Sattarova, A. (2013). “Research Sulfate Resistance of Cement-Containing Composition.” Procedia Engineering, Vol. 57, pp. 1166–1172.
119. Vimmrová, A., Krejsová, J., Scheinherrová, L., Doleželová, M., & Keppert, M. (2020). “Changes in structure and composition of gypsum paste at elevated temperatures.” Journal of Thermal Analysis and Calorimetry, Vol. 142(1), pp. 19–28.
120. Wang, S.-D., & Scrivener, K. L. (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, Vol. 25(3), pp. 561–571.
121. Wei, X. L., Ni, W., Zhang, S. Q., Wang, X., Li, J. J., Du, H. H. (2022). “Influence of the key factors on the performance of steel slag - desulphurisation gypsum - based hydration - carbonation materials.” Journal of Building Engineering, Vol. 45, 103591.
122. Wei, Y., Yao, W., Xing, X., & Wu, M. (2012). “Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27Al MAS NMR, TG–DSC and selective dissolution techniques.” Construction and Building Materials, Vol. 36, pp. 925–932.
123. Wu, T., Chi, M., & Huang, R. (2014). “Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash.” Construction and Building Materials, Vol. 66, pp. 172–180.
124. Xu, Aimin., Sarkar, S. L. (1991). “Microstructural study of gypsum activated fly ash hydration in cement paste.” Cement and Concrete Research, Vol. 21(6), pp. 1137–1147.
125. Yan, B., Kouame, K. J. A., Lv, W., Yang, P., & Cai, M. (2019). “Modification and in-place mechanical characteristics research on cement mortar with fly ash and lime compound admixture in high chlorine environment.” Journal of Materials Research and Technology. Vol. 8(1), pp. 1451-1460.
126. Young, J. F. , Mindess, S. & Darwin, D. (2002), Concrete. Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
127. Zeng, H., Li, Y., Zhang, J., Chong, P. Y., Zhang, K. (2022). “Effect of limestone powder and fly ash on the pH evolution coefficient of concrete in a sulfate-freeze–thaw environment.” Journal of Materials Research and Technology, Vol. 16, pp. 1889-1903.
128. Zhang, W., Choi, H., Sagawa, T., & Hama, Y. (2017). “Compressive strength development and durability of an environmental load-reduction material manufactured using circulating fluidized bed ash and blast-furnace slag.” Construction and Building Materials, Vol. 146, pp. 102–113.
129. Zhang, Z., Qian, J., You, C., & Hu, C. (2012). “Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick.” Construction and Building Materials, Vol. 35, pp. 109–116.

指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2023-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明