博碩士論文 110322014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.144.230.21
姓名 李俊昇(Chun-Sheng Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 雙S型曲線消能器應用於斜撐構架耐震性能提升之研究
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-11以後開放)
摘要(中) 地震對結構物帶來之損害為一種能量轉換,因此可在構架中透過消能器將導入之能量消散。前人所研究之曲線消能器提供新穎的消能方式,因消能器之外型非對稱,受力時拉、壓兩側之力量不一致,在壓力行為時容易產生挫屈現象,導致消能器破壞造成強度下降。因此,本研究係針對前人研究進行改良之雙S型曲線消能器,不論構架受力方向,雙S型曲線消能器皆能同時產生拉力以及壓力,有效改善曲線消能器受力不平衡之狀況。搭配由槽鋼組成之斜撐系統後,雙S型曲線消能器及斜撐系統能於地震作用下增強主體結構之強度及消散能量。
為探討雙S型曲線消能器之穩定性,進行一系列之構件試驗,將雙S型曲線消能器以及斜撐系統安裝於試驗裝置中施加反復荷載,可得其遲滯迴圈,再將其配置於抗彎構架中同樣施以對應之反復荷載,觀察其行為模式。實驗結果顯示,雙S型曲線消能器行為穩定,在正、負位移下強度對稱,有效改善壓力側強度下降現象。在構架試驗中,可知本研究之消能器可有效提升構架整體勁度及強度,使消能容量達到原抗彎構架2倍以上,驗證本研究之設計可使抗彎構架之耐震性能獲得顯著提升。
摘要(英) The damage cause by earthquakes to the structure is a kind of energy transfer, so we can design energy dissipators and install them into the structure to dissipate the energy transmitted by earthquakes; the previous study of the curve damper provides a novel way to dissipate energy, but the force in the tension side and the compression side will be different due to its asymmetric shape. In the compression side, the behavior of damper is easy to reach the critical buckling load, resulting in the damage of damper and strength loss. In order to solve this problem, this study is focus on the improvement of the study before, which is called double S-shaped curved damper. No matter the structure is subject to tension or compression, this kind of double S-shaped curved damper can generate both tension and compression at the same time, to effectively improve the unbalanced situation of the curved damper. With the steel brace system design, we can install the double S-shaped curve damper into the frame to dissipate the energy.
In order to confirm the stability of the double S-shaped curve damper, a series of component tests were conducted. The double S-shaped curve damper and the steel brace were installed into the test setup so that we can do the Cyclic loading test to obtain the hysteresis loops. Based on the result before, we can apply the corresponding Cyclic loading into the moment frame with damper to observe the behavior pattern under force action. The experimental results showed that the double S-shaped curve damper had stable energy dissipation behavior, and also showed the symmetrical strength as predicted, effectively improving the phenomenon of the strength dropping on the compression side before. In the frame test, it can be observed that the installation of this study′s dissipators can effectively improve the overall stiffness and strength of the braced frame, and the energy dissipation capacity can reach more than two times of the moment frame, which proofs that the design of this study can significantly improve the seismic performance of the moment frame.
關鍵字(中) ★ 雙 S 型曲線消能器
★ 能量消散
★ 抗彎構架
關鍵字(英) ★ Double S-shaped Curve Damper
★ Energy Dissipation
★ Moment Frame
論文目次 摘要 i
ABSTRACT ii
目錄 iv
表目錄 ix
圖目錄 x
照片目錄 xv
1 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究內容與方法 3
1-4 論文架構 4
2 第二章 文獻回顧 5
2-1 抗彎構架相關研究 5
2-2 梁柱接頭相關研究 6
2-3 同心斜撐相關研究 8
2-4 金屬位移型制震消能之相關研究 8
2-4-1 曲線消能器相關研究 9
2-4-2 S型曲線消能器相關研究 9
2-5 材料試驗相關研究 10
2-6 鋼結構設計之相關規定 10
2-6-1 強柱弱梁規定 11
2-6-2 梁柱彎矩強度比規定 12
2-6-3 柱的強度要求 13
2-6-4 梁柱腹板交會區之設計 14
2-6-5 斜撐構件設計 15
2-6-6 斜撐接合設計 16
2-6-7 含有被動消能系統建築物之設計 18
3 第三章 理論分析 20
3-1 前言 20
3-2 雙S型曲線消能器 20
3-2-1 雙S型曲線消能器的強度計算 21
3-2-2 曲線消能器各斷面內力分析 23
3-2-3 曲線消能器之應力及剪應力計算 23
3-3 配置雙S型曲線消能器之槽鋼斜撐構架 24
3-3-1 配置雙S型曲線消能器之槽鋼斜撐構架強度及內力分析 25
3-4 ANSYS有限元素分析模擬 26
3-4-1 構件幾何模組 (Geometry) 26
3-4-2 材料屬性參數 (Engineering Data) 27
3-4-3 邊界條件設置模組(Connections) 28
3-4-4 分析步幅參數(Analysis Setting) 29
3-4-5 負載參數設置(Load) 30
3-4-6 網格參數(Mesh) 31
3-4-7 分析作業模組(Solution) 31
4 第四章 實驗規劃與流程 32
4-1 前言 32
4-2 實驗規劃設計與參數設定 32
4-3 雙S型曲線消能器試體編號 33
4-3-1 雙S型曲線消能器構件試驗 33
4-3-2 配置雙S型曲線消能器構架試驗 33
4-4 試體製作 34
4-4-1 雙S型曲線消能器及梁柱構件 34
4-4-2 斜撐系統 34
4-5 試驗設備 35
4-6 試驗方法 37
4-6-1 雙S型曲線消能器構件試驗方法 38
4-6-2 雙S型曲線消能器構架試驗方法 39
4-7 位移加載歷時 40
5 第五章 實驗結果觀察 41
5-1 前言 41
5-2 雙S型曲線消能器之構件試驗結果 41
5-2-1 試體BD-723-110-70 41
5-2-2 試體BD-723-110-60 42
5-2-3 試體BD-723-110-50 43
5-2-4 試體BD-723-140-70 44
5-2-5 試體BD-1206-110-70 45
5-2-6 試體BD-1206-140-70 47
5-2-7 雙S型曲線消能器構件試驗總體性能比較 48
5-3 雙S型曲線消能器應用於斜撐構架承載行為 49
5-3-1 試體FM 49
5-3-2 試體FD-723-110-50 50
5-3-3 試體FD-723-110-70 51
5-3-4 構架試驗比較 52
6 第六章 結果分析與比較 53
6-1 前言 53
6-2 降伏強度理論值及實驗結果比較 53
6-3 構件試驗結果比較 54
6-3-1 不同有效長度(L)試體之承載性能比較 54
6-3-2 不同偏心距(Δ)試體之承載性能比較 56
6-3-3 不同斷面深度(d)試體之承載性能比較 57
6-3-4 偏心率(2Δ/L)對於試體承載性能之比較 58
6-4 構架試驗承載性能比較 59
6-4-1 FD-723-110-50與FM之耐震型能比較 59
6-4-2 FD-723-110-70與FM之耐震性能比較 60
6-5 等效阻尼比 60
6-6 有限元素分析與試驗結果之比較 62
7 第七章 結論與建議 63
7-1 結論 63
7-2 建議 64
參考文獻 65
參考文獻 1. Krawinkler, H. (1978), “Shear in Beam-Column Joint in Seismic Design of
Steel Frames”, Engineering Journal, AISC, Vol.15, pp.82-91.
2. Tsai, K.C. and Popov, E.P. (1990), “Seismic Panel Zone on Elastic Story Driftin Steel Moment Resistance Frames”, Journal of Structural Engineering-ASCE, Vol.116, No.12, pp. 3285-3301.
3. Tremblay, R., Timler, P., Bruneau, M. and Filiatrault, A. (1995), “Performance of steel structures during the 1994 Northridge earthquake,” Canadian Journal of Civil Engineering, 22(2), pp. 338-360.
4. Krawinkler, H. (1996), “Earthquake design and performance of steel structures,” Bulletin of the New Zealand National Society for Earthquake Engineering, 29(4), pp. 229-241.
5. Aziznamini, A., and Radziminiski, J.B. (1989), “Static and cyclic performance of semi-rigid steel beam-to-column connections”, Journal of
Structural Engineering, ASCE, Vol.115, No.12, pp.2979-2999
6. Civjan, L., De Matteis, G., and Landolfo, R.(2000), “Retrofit of Pre-Northridge Moment-Resisting Connection”, Journal of Structural Engineering-ASCE, Vol.126, Iss.4, p445-452.
7. Youssef, N.F.G., Bonowitz, D., and Gross, J.L. (1995), “A survey of steel
moment-resisting frame buildings affected by the 1994 Northridge Earthquake,” Report No. NISTIR 5625, National Institute of Standards and Technology, Gaithersburg, MD.
8. 內政部營建署(2006),鋼構造建築物鋼結構設計技術規範。
9. Tremblay, R. (2001), “Seismic behavior and design of concentrally braced steel frames”, Engneering Journal, Vol.38, No.3, pp.148-160.
10. 蔡克銓(1993),”三角形鋼板消能器之理論、實驗與應用”,結構工程,第八卷,第四期,頁3-19
11. Halim, H. (2015), Performance Improvement of Semi-rigid Moment Frame with Curved Dampers,國立中央大學土木工程學系,碩士論文。
12. 曾偉展 (2020), 具束制S型消能器之A型斜撐鋼構架耐震性能研究,國立中央大學土木工程學系,碩士論文。
13. ASTM, Standard Test Methods for Tension Testing of Metallic Materials.
14. AISC, Manual of Steel Construction Allowable Stress Design, 9th Edition, American Institute of Steel Construction, Chicago III..
15. 內政部營建署(2011),建築物耐震設計規範及解說,台北。
16. ANSYS. Workbench user’s guide ANSYS Inc.;2016
17. America Institute of Steel Construction.(2005),Seismic Provisions for Structural Steel Building ,AISC 341-05,Chicago,IL.
18. Chopra AK. Dynamics of structures: theory and applications to earthquake engineering, 2nd ed. Englewood Cliffs: prentice Hall; 2001.
19. Black, C., Makris, N., and Aiken, I., “Component Testing, Stability Analysis and Characterization of Buckling-Restrained Unbonded Braces”, September 2002.
20. SAC. Case studies of steel moment frame building performance in the Northridge earthquake of January 17, 1994. Technical Report SAC 95-07, SAC Joint Venture, Sacramento, CA; 1995a.
21. SAC. Surveys and assessment of damage to buildings affected by the Northridge earthquake of January 17, 1994. Technical Report SAC 95-06, SAC Joint Venture, Sacramento, CA; 1995e.
22. FEMA 355E. State of the art report on past performance of steel moment-frame buildings in earthquakes. Bonowitz D, Evans R. Federal Emergency Management Agency, Washington, DC; 2000
23. S.M. Shaw, A.M. Kanvinde, B.V. Fell, Earthquake-induced net section fracture in brace connections—experiments and simulations, J. Constr. Steel Res. 66 (12) (2010) 1492–1501.
24. T. Okazaki, D.G. Lignos, T. Hikino, K. Kajiwara, Dynamic response of a chevron concentrically braced frame, J. Struct. Eng. ASCE 139 (4) (2013) 515–525
25. H. L. Hsu and H. Halim, “Improving seismic performance of framed structures with steel curved dampers,” Engneering Journal, vol. 130, pp.99-111, 2017
26. H. L. Hsu and H. Halim, “Brace performance with steel curved dampers and amplified deformation mechanisms,” Engneering Journal, vol. 175, pp.628-644, 2018
27. H. Halim and H. L. Hsu, “Brace performance with steel curved dampers and amplified deformation mechanisms,” Journal of Constructional Steel Research, vol. 175,10603, 2020
指導教授 許協隆 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明