博碩士論文 110322038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:18.226.159.73
姓名 李韓中(Han-Chung Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 可液化地盤中版樁牆受不同基盤輸入震動的反應
(Response of sheet pile wall in liquefiable ground subject to the different base input motions)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-30以後開放)
摘要(中) 臺灣位於菲律賓海板塊和歐亞板塊的聚合邊界,地震發生頻繁,且臺灣約有三分之一的地形為平原地區,多屬地質軟弱的沖積地層,地下水位面高,使土壤液化潛能高,當大規模地震作用時,即可能發生土壤液化。版樁牆具有良好的經濟性及施工性,因此常被作為河岸、港灣、碼頭的擋土系統,該區域地下水位面非常高,因此通常有較高土壤液化潛能,當土壤液化發生時,版樁牆會因土壤大變形而傾倒及損毀。
地震強度與延時皆與地震災害影響的嚴重程度呈正相關,為瞭解加速度振幅與週數對液化砂土中版樁牆的受振反應,本研究利用中央大學地工離心機進行動態離心模型試驗。在24 g重力場中,試驗輸入基盤振動頻率為1 Hz,最大加速度振幅及持續週數分別為0.1 g-36 cycles、0.14 g-19 cycles、0.17 g-10 cycles以及0.2 g-5 cycles的非等振幅正弦波,並透過加速度計、孔隙水壓計、線性可變差動變壓器、圓錐貫入試驗儀、地中位移計與地表追蹤計記錄土壤受震反應。
試驗結果顯示,土壤受振強度與液化深度呈正相關,隨著液化深度增加,對地表產生的水平位移量也會增加,土壤受振持續時間亦會對液化土壤造成位移增加,因此地表位移相近;當輸入振幅與週數呈反比而愛氏震度相同時,造成牆傾角相近,然而土壤受振強度大到牆前土壤也液化後,牆傾角會明顯大於其他愛氏震度相同的小振;在版樁牆受振後土壤超額孔隙消散階段,版樁牆不再繼續位移,牆後土壤會繼續沉陷。
摘要(英) The plain of west Taiwan is formed of soft alluvium ground with a high groundwater level. As Taiwan is located on the Circum-Pacific Seismic Belt, earthquakes occur frequently and can lead to soil liquefaction on the alluvium ground. Sheet pile walls are often used as a retaining system at riverbanks, harbors, and piers due to their cost-effectiveness, convenience, and constructability. Near the river, soil deposits are composed of alluvial soils and groundwater levels are very high, therefore soil liquefaction are usually more common around this area. When soil liquefaction occurs, the sheet pile walls would fall or become damaged as a result of soil deformation.
Both the intensity and duration of the earthquake are positively correlated with the severity of the earthquake disaster. In order to understand the seismic response behavior of sheet pile walls in saturated soil caused by these two variations, four dynamic centrifuge tests were conducted to simulate the sheet pile wall in liquefiable ground, and used the centrifugal model scaling law to simulate the seismic response of the sheet pile wall in a mixed soil layer of saturated silica sand with relative density of 90% and 60%, and thicknesses were 1m and 4m, respectively. In the 24 times gravitational field, frequency of input motion is 1 Hz. The maximum acceleration of input motion and the cycles of the maximum acceleration of the motion are 0.2 g-5 cycles, 0.17 g-10 cycles, 0.14 g-19 cycles, 0.11 g-36 cycles of ramped sine waves, respectively. In this test, accelerometers, linear variable differential transformers, pore water pressure transducers, spaghetti and surface marker were arranged to measure the response of the model. The test results show that 1. Liquefaction depth and the intensity of input motion are positively correlated; 2. As the input motions have the same AI, if the amplitude is big enough to lead to front wall soil liquefaction occur, the wall will tilting angle much more than other smaller motion; 3. In the stage of dissipation period, the sheet pile wall will no longer continue to move, and the backwall soil will continue to settle.
關鍵字(中) ★ 版樁牆
★ 土壤液化
★ 離心模型試驗
★ 愛氏震度
關鍵字(英) ★ Sheet pile wall
★ Soil liquefaction
★ Centrifuge modeling
★ Arias intensity
論文目次 摘要 i
Abstact iii
目錄 v
圖目錄 viii
表目錄 xiii
一、 前言 1
1-1 研究動機與目的 1
1-2 研究方法 1
1-3 論文內容 2
二、 文獻回顧 3
2-1 土壤液化定義與發生機制 3
2-1-1 土壤液化之定義 3
2-1-2 土壤液化災害現象 5
2-2 離心模型尺度律 6
2-3 整合物理與數值模型模擬於土壤液化之研究計畫 8
2-3-1 VELACS project 8
2-3-2 LEAP project 9
三、 試驗設備與試體製作 10
3-1 試驗儀器與設備 10
3-1-1 地工離心機 10
3-1-2 單軸向振動台 11
3-1-3 資料擷取系統 12
3-1-4 固壁式蜂巢試驗箱 13
3-1-5 版樁牆模型 13
3-1-6 各式量測工具 16
3-1-7 移動式霣降儀 19
3-1-8 改良式圓錐貫入系統 20
3-2 試驗配置 22
3-3 試驗材料 26
3-4 試體準備 27
3-4-1 試驗箱組立 27
3-4-2 試體製作 28
3-4-3 設置版樁牆模型 31
3-4-4 黏滯液體 34
3-4-5 試體飽和 35
四、 試驗結果與討論 37
4-1 試驗規劃與流程 37
4-2 試驗結果 39
4-2-1 Model E_60%_Dry Sand 39
4-2-2 Model A_60%_0.1g_36cycs 53
4-2-3 Model B_60%_0.14g_19cycs 60
4-2-4 Model C_60%_0.17g_10cycs 67
4-2-5 Model D1_60%_0.2g_5cycs 74
4-2-6 Model D2_60%_0.2g_5cycs 81
4-2-7 Model D3_50% _0.17g_5cycs 88
4-3 綜合討論 96
4-3-1 試體的可重複性驗證 96
4-3-2 背填土水平位移 96
4-3-3 圓錐貫入試驗分析 106
4-3-4 超額孔隙水壓以及背填土沉陷比較 109
4-3-5 不同振幅與週數對牆傾角的影響 112
4-3-6 牆後超額孔隙水壓與加速度比較 117
4-3-7 不同振幅與週數對土壤液化深度的影響 120
4-3-8 以愛氏震度呈現土壤受振情形 120
4-3-9 小結 122
五、 結論與建議 123
5-1 結論 123
5-2 建議 124
六、 參考文獻 125
七、 附錄 128
參考文獻 [1] Das, B.M., Principles of Foundation Engineering, Brooks/Cole Publishing Company, Pacific Grove, California, U.S.A. (1998)

[2] Ishihara, K., “Stability of natural deposits during earthquake,” Proceedings. of 11th International Conference on Soil Mechanics and Foundation Engineering., San Francisco, U.S.A.Vol. 1, pp. 321-376 (1985)

[3] Krammer, S.L., Geotechnical earthquake engineering, Prentice Hall, New Jersey, U.S.A. (1996)

[4] Kutter, B. L., Trevor J. C, Nicholas S., Masoud H. B., Majid T. M., Mourad Z., Sandra E., "LEAP-UCD-2017 V. 1.01 Model Specifications." Cham, Germany (2020)

[5] Popescu, R. and Prevost, J. H “Comparison between VELACS numerical ′class A′ predictions and centrifuge experimental soil test results,” Soil Dynamics and Earthquake Engineering, Vol.14, pp.79-92 (1995)

[6] Prevost, J.H. and Popescu, R., “Constitutive relations for soil materials,” Electronic Journal of Geotechnical Engineering, Vol.1 (1996)

[7] Das, B.M., Principles of Foundation Engineering Sixth Edition, pp.415 , Thomson, Canada (2007)

[8] Mitsu Okamura, Toshiyuki Inoue, “Preparation of fully saturated models for liquefaction study”, International Journal of Physical Modelling in Geotechnics, Vol. 12, pp.39–46 (2012)

[9] Tobita, T., Manzari, M.T., Ozutsumi, O., Ueda, K., Uzuoka, R., Iai, S., “Benchmark centrifuge tests and analyses of liquefaction-induced lateral spreading during earthquake,” Geotechnics for catastrophic flooding events, pp.127–82 (2015)

[10] Hung, W. Y., Lee, C. J. and Hu, L. M. “Study of the effects of container boundary and slope on soil liquefaction by centrifuge modeling,” Soil Dynamics and Earthquake Engineering, Vol.113, pp.682-697 (2018)

[11] Manzari, M. T., Ghoraiby, M. E., Kutter, B. L., Zeghal, M., Abdoun, T., Arduino, P., Armstrong, R. J., Beaty, M., Carey, T., Chen, Y., Ghofrani, A., Gutierrez, D., Goswami, N., Haigh, S. K., Hung, W. Y., Iai, S., Kokkali, P., Lee, C. J., Madabhushi, S. P. G., Mejia L., Sharp, M., Tobita, T., Ueda, K., Zhou, Y. and Ziotopoulou, K., “Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase,” Soil Dynamics and Earthquake Engineering, Vol.113, pp.714-743 (2018)

[12] Kutter, B. L., Carey, T. J., Hashimoto, T., Zeghal, M., Adboun, T., Kokkali, P., Madabhushi, G., Haigh, S., Burali d’ Arezzo, F., Madabhushi, S., Hung, W. Y., Lee, C. J., Chegn, H. C., Iai, S., Tobita, T., Zhou, Y. G., Chen, Y., Sun, Z. B. and Manzari, M. T., “LEAP-GWU-2015 experiment specifications, results, and comparisons,” Soil Dynamics and Earthquake Engineering, Vol.113, pp.616-628 (2018)

[13] Kutter, B. L., Manzari, M. T., Zeghal, M., “Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading LEAP-UCD-2017,” Springer Open (2020)

[14] Renzo Cornejo, Jorge Macedo, “Numerical Simulations of the LEAP 2020 Centrifuge Experiments Using PM4Sand” , Geotechnical, Geological and Earthquake Engineering, Vol. 52 (2022)

[15] Taylor, R.N., “Geotechnical Centrifuge Technology,” CRC Press, USA, pp.19-33 (1994).

[16] LEAP RPI 2020 Version 0.91 Model Specifications.

[17] 經濟部中央地質調查所,土壤液化潛勢查詢系統 (2021),
https://www.moeacgs.gov.tw/achi/achi_more?id=34a9a88ea9f946acbefae0c0148a20a4

[18] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學系,桃園,臺灣 (2013)

[19] 李崇正,「離心模型試驗在大地工程之應用」,地工技術,第36集,第76-91頁(1991)

[20] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第30卷,第4期,第89-92頁 (2003)

[21] 黃俊學,「基盤土壤液化對上方土堤位移的影響」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2016)

[22] 廖庭緯,「以離心模型試驗模擬緩坡純砂層因液化導致測潰時之土壤特性」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2018)

[23] 楊子霈,「以動態離心模型試驗模擬不同型式基礎建築物於液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2013)

[24] 凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2011)

[25] 胡林楙,「基盤土壤液化引致的側潰對上方土堤之影響及其改善對策」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2018)

[26] 林彥宏,「不同頻率含量基盤震動對液化地盤中版樁牆的影響」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2020)

[27] 每日頭條,步進馬達的步距角計算方法,(2019),
https://kknews.cc/zh-tw/finance/kvb3gr8.html

[28] 臺北市政府工務局,土壤液化可能造成的災害(2021),https://pwd.gov.taipei/News_Content.aspx?n=A5517D0D050295AE&sms=87415A8B9CE81B16&s=52C2FE4E09B994BE
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明