博碩士論文 106621020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.147.126.146
姓名 林巧均(Qiao-Jun Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
(Atmospheric Cloud-Radiative Effect Changes in the Madden-Julian Oscillation under Global Warming)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ MJO對南海颱風活動之影響
★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?★ Changes of the Hadley Cell During the Last Four Decades
★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation★ Changes of Tropical Tropopause in Response to Global Warming
★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究
★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent
★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study★ The role of shallow convection in tropical circulation: a simple analytic approach
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 近年研究強調大氣雲輻射效應(atmospheric cloud-radiative effect, ACRE)對Madden-Julian Oscillation(MJO)成長與維持的重要性。然而,MJO 的雲輻射效應將如何隨著溫室氣體增加而變化,其相關機制仍須更多討論。為此,我們採用Geophysical Fluid Dynamics Laboratory′s CM4.0 (GFDL-CM4) physical climate model討論MJO在1%CO2情境下的變化。與前人研究一致,全球暖化下MJO有較強的對流活動,其雲的發展也更顯著。增強的greenhouse enhancement factor (GEF) 和增多的高雲族覆蓋結果一致。MJO的雲輻射效應與中層垂直水氣平流有良好的相關性,其主要貢獻來自於氣候平均(background)水氣垂直梯度和季內尺度垂直運動的交互作用。這個關聯性顯示雲輻射效應的增強,是因為在暖化下有更多水氣被輸送至較高的對流層。研究結果也指出,降低的有效粗濕穩定度(effective gross moist stability)是由於增強的垂直水氣平流與雲輻射效應,這些結果強調大氣—雲—輻射效應在暖化後對MJO的重要性。
摘要(英) Recent research has shown that the atmospheric cloud-radiative effect (ACRE) plays a key role in the growth and maintenance of the Madden-Julian Oscillation (MJO). However, the mechanisms in how the ACRE in the MJO will change with increasing greenhouse gases are still not well understood. To this end, the Geophysical Fluid Dynamics Laboratory′s CM4.0 physical climate model (GFDL-CM4) is employed to elucidate changes in the MJO with 1% increases in CO2 concentration per year. Under global warming, the MJO amplifies and the evolution of the cloud population becomes more pronounced, consistent with previous studies. An intensification of the greenhouse enhancement factor (GEF) is found, in agreement with an increase in high clouds. The ACRE exhibits a high correlation with the mid-level vertical moisture advection, which is dominated by the interaction between mean-state moisture and the intraseasonal vertical velocity. This relation implies that ACRE strengthens because more moisture is transported to the upper troposphere with warming. Results also indicate that the effective gross moist stability (GMS) decreases due to the strong vertical moisture advection and increased radiative effects from ACRE. According to GFDL-CM4, these findings suggest that moisture-cloud-radiation interactions may become more important to the MJO in a warmer climate.
關鍵字(中) ★ 馬登-朱利安振盪
★ 大氣雲輻射效應
★ 全球暖化
關鍵字(英) ★ Madden-Julian Oscillation
★ Atmospheric Cloud-Radiative Effect
★ Global Warming
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgments iv
List of Figures viii
List of Tables xi
1 Introduction 1
2 Criteria for Evaluating MJO Simulations in CMIP6 models 4
3 Data and Methodology 9
3.1 Climate Model Simulation Data 9
3.2 Data Processing and MJO Phase Composite 10
3.3 Moist Static Energy Budget Analysis 11
3.4 Atmospheric Cloud Radiative Effect 11
3.5 Greenhouse Enhancement Factor 12
4 MSE Budget and Projection 14
5 Cloud-Radiation Analysis 18
6 Vertical Profile and Cloud Distribution of the MJO Shallow Convection 21
7 Cloud-Moisture-Radiation Interaction Changes 25
8 Atmospheric Cloud-Radiation Effect Response 29
9 Discussions and Future Work 34
9.1 Discussion 34
9.2 Future Work 37
10 Supplement Information 39
10.1 MJO Phase Diagram 39
10.2 Measures of Moisture-Cloud-Radiation Effect 44
References 46
Appendix A: The potential impact of model horizontal resolution on the simulation of atmospheric cloud radiative effect in CMIP6 models 55
Appendix B: A More Stable Atmosphere under Global Warming Accelerates the Hydrological Cycle of Madden-Julian Oscillation 71
參考文獻 Adames, Á. F. (2017). Precipitation Budget of the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 74(6), 1799–1817.
Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., &Wu, J. (2017a). Changes in the Structure and Propagation of the MJO with increasing CO2. Journal of Advances in Modeling Earth Systems, 9(2), 1251–1268.
Adames, Á. F., Kim, D., Sobel, A. H., DelGenio, A., &Wu, J. (2017b). Characterization of Moist Processes Associated With Changes in the Propagation of the MJO With Increasing CO2. Journal of Advances in Modeling Earth Systems, 9(8), 2946–2967.
Adames, Á. F., & Wallace, J. M. (2014). Three-Dimensional Structure and Evolution of the Vertical Velocity and Divergence Fields in the MJO. Journal of the Atmospheric Sciences, 71(12), 4661–4681.
Ahmed, F., Neelin, J. D., & Adames, Á. F. (2021). Quasi-equilibrium and weak temperature gradient balances in an equatorial beta-plane model. Journal of the Atmospheric Sciences, 78(1), 209–227.
Ahn, M.-S., Kim, D., Sperber, K. R., Kang, I.-S., Maloney, E., Waliser, D., & Hendon, H. (2017). MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dynamics, 49(11), 4023–4045.
Andersen, J. A., & Kuang, Z. (2012). Moist Static Energy Budget of MJO-like Disturbances in the Atmosphere of a Zonally Symmetric Aquaplanet. Journal of Climate, 25(8), 2782–2804.
Arnold, N. P., Branson, M., Kuang, Z., Randall, D. A., & Tziperman, E. (2015). MJO Intensification with Warming in the Superparameterized CESM. Journal of Climate, 28(7), 2706–2724.
Arnold, N. P., Kuang, Z., & Tziperman, E. (2013). Enhanced MJO-like Variability at High SST. Journal of Climate, 26(3), 988–1001.
Back, L., & Bretherton, C. (2006). Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophysical Research Letters, 33(17).
Benedict, J. J., Medeiros, B., Clement, A. C., & Olson, J. G. (2020). Investigating the Role of Cloud-Radiation Interactions in Subseasonal Tropical Disturbances. Geophysical Research Letters, 47(9), e2019GL086817.
Benedict, J. J., & Randall, D. A. (2007). Observed characteristics of the MJO relative to maximum rainfall. Journal of the Atmospheric Sciences, 64(7), 2332–2354.
Bretherton, C. S., McCaa, J. R., & Grenier, H. (2004). A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. part i: Description and 1d results. Monthly Weather Review, 132(4), 864–882.
Bui, H. X., & Maloney, E. D. (2018). Changes in Madden-Julian Oscillation Precipitation and Wind Variance Under Global Warming. Geophysical Research Letters, 45(14), 7148–7155.
Bui, H. X., & Maloney, E. D. (2019). Mechanisms for Global Warming Impacts on Madden–Julian Oscillation Precipitation Amplitude. Journal of Climate, 32(20), 6961–6975.
Bui, H. X., & Yu, J.-Y. (2021). Impacts of Model Spatial Resolution on the Simulation of Convective Spectrum and the Associated Cloud Radiative Effect in the Tropics. Journal of the Meteorological Society of Japan. Ser. II, 99(4), 789–802.
Cao, C., Liu, F., &Wu, Z. (2021). Role of cloud radiative feedback in the Madden–Julian oscillation dynamics: a trio-interaction model analysis. Theoretical and Applied Climatology, 145(1), 489–499.
Chang, C.-W. J., Tseng, W.-L., Hsu, H.-H., Keenlyside, N., & Tsuang, B.-J. (2015). The Madden-Julian Oscillation in a warmer world. Geophysical Research Letters, 42(14), 6034–6042.
Chen, G., & Wang, B. (2019). Dynamic moisture mode versus moisture mode in MJO dynamics: Importance of the wave feedback and boundary layer convergence feedback. Climate Dynamics, 52(9-10), 5127–5143.
Chen, Y.-C., & Yu, J.-Y. (2021). Modes of tropical convection and their roles in transporting moisture and moist static energy: contrast between deep and shallow convection. Climate Dynamics, 57(7), 1789–1803.
Chepfer, H., Cesana, G., Winker, D., Getzewich, B., Vaughan, M., & Liu, Z. (2013). Comparison of Two Different Cloud Climatologies Derived from CALIOP-Attenuated Backscattered Measurements (Level 1): The CALIPSO-ST and the CALIPSO-GOCCP. Journal of Atmospheric and Oceanic Technology, 30(4), 725–744.
Ciesielski, P. E., Johnson, R. H., Jiang, X., Zhang, Y., & Xie, S. (2017). Relationships between radiation, clouds, and convection during DYNAMO. Journal of Geophysical Research: Atmospheres, 122(5), 2529–2548.
Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., et al. (2017). AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 10(2), 585–607.
Crueger, T., & Stevens, B. (2015). The effect of atmospheric radiative heating by clouds on the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7(2), 854–864.
Dao, L. T., & Yu, J.-Y. (2021). Impacts of Madden-Julian oscillation on tropical cyclone activity over the South China Sea: Observations versus HiRAM simulations. International Journal of Climatology, 41(2), 830–845.
Del Genio, A. D., & Chen, Y. (2015). Cloud-radiative driving of the Madden-Julian Oscillation as seen by the A-Train. Journal of Geophysical Research: Atmospheres, 120(11), 5344–5356.
Donner, L. J., Seman, C. J., Hemler, R. S., & Fan, S. (2001). A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. Journal of Climate, 14(16), 3444–3463.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958.
Fuchs, Ž., & Raymond, D. J. (2002). Large-Scale Modes of a Nonrotating Atmosphere with Water Vapor and Cloud–Radiation Feedbacks. Journal of the Atmospheric Sciences, 59(10), 1669–1679.
Fuchs, Ž., & Raymond, D. J. (2017). A simple model of intraseasonal oscillations. Journal of Advances in Modeling Earth Systems, 9(2), 1195–1211.
Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447–462.
Haertel, P. (2018). Sensitivity of the Madden Julian Oscillation to Ocean Warming in a Lagrangian Atmospheric Model. Climate, 6(2), 45.
Hagos, S., Feng, Z., Landu, K., & Long, C. N. (2014). Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 6(3), 938–949.
Held, I., Guo, H., Adcroft, A., Dunne, J., Horowitz, L., Krasting, J., Shevliakova, E., Winton, M., Zhao, M., Bushuk, M., et al. (2019). Structure and Performance of GFDL’s CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 11(11), 3691–3727.
Hendon, H. H., Wheeler, M. C., & Zhang, C. (2007). Seasonal Dependence of the MJO–ENSO Relationship. Journal of Climate, 20(3), 531–543.
Hsu, P.-C., & Li, T. (2012). Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. Journal of Climate, 25(14),
4914–4931.
Hu, Q., Han, Z., & Wang, S. (2022). Cloud Radiative Effects on MJO Development in DYNAMO. Journal of Climate, 1–35.
Huber, M. B., & Zanna, L. (2017). Drivers of uncertainty in simulated ocean circulation and heat uptake. Geophysical Research Letters, 44(3), 1402–1413.
Hung, C.-S., & Sui, C.-H. (2018). A Diagnostic Study of the Evolution of the MJO from Indian Ocean to Maritime Continent: Wave Dynamics versus Advective Moistening Processes. Journal of Climate, 31(10), 4095–4115.
Inoue, K., Adames, Á. F., & Yasunaga, K. (2020). Vertical Velocity Profiles in Convectively Coupled Equatorial Waves and MJO: New Diagnoses of Vertical Velocity Profiles in the Wavenumber–Frequency Domain. Journal of the Atmospheric Sciences, 77(6), 2139–2162.
Inoue, K., & Back, L. E. (2015). Gross Moist Stability Assessment during TOGA COARE: Various Interpretations of Gross Moist Stability. Journal of the Atmospheric Sciences, 72(11), 4148–4166.
Inoue, K., & Back, L. E. (2017). Gross Moist Stability Analysis: Assessment of Satellite-Based Products in the GMS Plane. Journal of the Atmospheric Sciences, 74(6), 1819–1837. 49
Jiang, X. (2017). Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulations. Journal of Geophysical Research: Atmospheres, 122(2), 755–770.
Kim, D., Ahn, M.-S., Kang, I.-S., & Del Genio, A. D. (2015). Role of Longwave Cloud–Radiation Feedback in the Simulation of the Madden–Julian Oscillation. Journal of Climate, 28(17), 6979–6994.
Kim, D., Kug, J.-S., & Sobel, A. H. (2014). Propagating versus Nonpropagating Madden–Julian Oscillation Events. Journal of Climate, 27(1).
Kiranmayi, L., & Maloney, E. D. (2011). Intraseasonal moist static energy budget in reanalysis data. Journal of Geophysical Research: Atmospheres, 116(D21).
Klotzbach, P. J. (2014). The Madden–Julian Oscillation’s Impacts on Worldwide Tropical Cyclone Activity. Journal of Climate, 27(6), 2317–2330.
Lau, W. K., Waliser, D. E., & Goswami, B. (2012). South Asian monsoon. In Intraseasonal variability in the atmosphere-ocean climate system (pp. 21–72). Springer.
Lee, Y.-Y., & Grotjahn, R. (2019). Evidence of specific mjo phase occurrence with summertime california central valley extreme hot weather. Advances in Atmospheric Sciences, 36(6), 589–602.
Li, J.-L., Lee, W.-L., Yu, J.-Y., Hulley, G., Fetzer, E., Chen, Y.-C., & Wang, Y.-H. (2016). The impacts of precipitating hydrometeors radiative effects on land surface temperature in contemporary GCMs using satellite observations. Journal of Geophysical Research: Atmospheres, 121(1), 67–79.
Li, J.-L., Lee, W.-L., Lee, T., Fetzer, E., Yu, J.-Y., Kubar, T. L., & Boening, C. (2015). The impacts of cloud snow radiative effects on Pacific Ocean surface heat fluxes, surface wind stress, and ocean temperatures in coupled GCM simulations. Journal of Geophysical Research: Atmospheres, 120(6), 2242–2260.
Li, J.-L., Suhas, E., Richardson, M., Lee, W.-L., Wang, Y.-H., Yu, J.-Y., Lee, T., Fetzer, E., Stephens, G., & Shen, M.-H. (2018). The impacts of bias in cloud-radiation-dynamics interactions on central Pacific seasonal and El Niño simulations in contemporary GCMs. Earth and Space Science, 5(2), 50–60.
Li, Y., Thompson, D. W., & Yi, H. (2017). The influence of atmospheric cloud radiative effects on the large-scale stratospheric circulation. Journal of Climate, 30(15), 5621–5635.
Lin, Q.-J., & Yu, J.-Y. (2022). The potential impact of model horizontal resolution on the simulation of atmospheric cloud radiative effect in CMIP6 models. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 1–15.
Liou, K.-N. (1976). On the Absorption, Reflection and Transmission of Solar Radiation in Cloudy Atmospheres. Journal of Atmospheric Sciences, 33(5), 798–805.
Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific. Journal of Atmospheric Sciences, 28(5), 702–708.
Madden, R. A., & Julian, P. R. (1972). Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. Journal of Atmospheric Sciences, 29(6), 1109–1123.
Maloney, E. D., Adames, Â. F., & Bui, H. X. (2019). Madden–Julian oscillation changes under anthropogenic warming. Nature Climate Change, 9(1), 26–33.
Maloney, E. D., Sobel, A. H., & Hannah, W. M. (2010). Intraseasonal Variability in an Aquaplanet General Circulation Model. Journal of Advances in Modeling Earth Systems, 2(2).
Maloney, E. D., & Xie, S.-P. (2013). Sensitivity of tropical intraseasonal variability to the pattern of climate warming. Journal of Advances in Modeling Earth Systems, 5(1), 32–47.
Mayta, V. C., Adames, Á. F., & Ahmed, F. (2022). Westward-Propagating Moisture Mode Over the Tropical Western Hemisphere. Geophysical Research Letters, 49(6), e2022GL097799.
Mei, S., Li, T., & Chen, W. (2015). Three-type MJO initiation processes over the Western Equatorial Indian Ocean. Advances in Atmospheric Sciences, 32(9), 1208–1216.
Ming, Y., Ramaswamy, V., Donner, L. J., Phillips, V. T., Klein, S. A., Ginoux, P. A., & Horowitz, L.W. (2007). Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. Journal of the Atmospheric Sciences, 64(4), 1189–1209.
Moon, J.-Y., Wang, B., & Ha, K.-J. (2011). ENSO regulation of MJO teleconnection. Climate Dynamics, 37(5), 1133–1149.
Neelin, J. D., & Held, I. M. (1987). Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review, 115(1), 3–12.
Pendergrass, A. G., & Hartmann, D. L. (2014). The Atmospheric Energy Constraint on Global-Mean Precipitation Change. Journal of Climate, 27(2), 757–768.
Peters, M. E., & Bretherton, C. S. (2005). A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud-radiative feedbacks. Journal of Climate, 18(20), 4216–4234.
Raymond, D. J. (2001). A New Model of the Madden–Julian Oscillation. Journal of the Atmospheric Sciences, 58(18), 2807–2819.
Raymond, D. J., & Fuchs, ˇ Z. (2009). Moisture modes and the Madden–Julian oscillation. Journal of Climate, 22(11), 3031–3046.
Raymond, D. J., Sessions, S. L., Sobel, A. H., & Fuchs, Ž. (2009). The Mechanics of Gross Moist Stability. Journal of Advances in Modeling Earth Systems, 1(3).
Ren, P., Kim, D., Ahn, M.-S., Kang, D., & Ren, H.-L. (2021). Intercomparison of MJO Column Moist Static Energy and Water Vapor Budget among Six Modern Reanalysis Products. Journal of Climate, 34(8), 2977–3001.
Rotstayn, L. D. (1997). A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. i: Description and evaluation of the microphysical processes. Quarterly Journal of the Royal Meteorological Society, 123(541), 1227–1282.
Rotstayn, L. D., Ryan, B. F., & Katzfey, J. J. (2000). A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Monthly Weather Review, 128(4), 1070–1088.
Rushley, S. S., Kim, D., & Adames, Á. F. (2019). Changes in the MJO under Greenhouse Gas–Induced Warming in CMIP5 Models. Journal of Climate, 32(3), 803–821.
Shell, K. M., de Szoeke, S. P., Makiyama, M., & Feng, Z. (2020). Vertical Structure of Radiative Heating Rates of the MJO during DYNAMO. Journal of Climate, 33(12), 5317–5335.
Slingo, A., & Slingo, J. (1988). The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quarterly Journal of the Royal Meteorological Society, 114(482), 1027–1062.
Slingo, J., Rowell, D., Sperber, K., & Nortley, F. (1999). On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Niño. Quarterly Journal of the Royal Meteorological Society, 125(554), 583–609.
Snide, C. E., Adames, Á. F., Powell, S. W., & Mayta, V. C. (2022). The role of large-scale moistening by adiabatic lifting in the Madden–Julian oscillation convective onset. Journal of Climate, 35(1), 269–284.
Sobel, A., Wang, S., & Kim, D. (2014). Moist Static Energy Budget of the MJO during DYNAMO. Journal of the Atmospheric Sciences, 71(11), 4276–4291.
Sobel, A. H., & Bretherton, C. S. (2000). Modeling Tropical Precipitation in a Single Column. Journal of Climate, 13(24), 4378–4392.
Sobel, A. H., Nilsson, J., & Polvani, L. M. (2001). The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves. Journal of the Atmospheric Sciences, 58(23), 3650–3665.
Subramanian, A., Jochum, M., Miller, A. J., Neale, R., Seo, H., Waliser, D., & Murtugudde, R. (2014). The MJO and global warming: a study in CCSM4. Climate Dynamics, 42(7), 2019–2031.
Tao, W.-K., Lang, S., Simpson, J., Sui, C.-H., Ferrier, B., & Chou, M.-D. (1996). Mechanisms of Cloud-Radiation Interaction in the Tropics and Midlatitudes. Journal of Atmospheric Sciences, 53(18), 2624–2651.
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American meteorological Society, 93(4), 485–498.
Tiedtke, M. (1993). Representation of clouds in large-scale models. Monthly Weather Review, 121(11), 3040–3061.
Tsai, Y.-C., & Yu, J.-Y. (2023). Contrasting the energy recharge-discharge cycle between propagating and eastward-decaying Madden–Julian Oscillation events. Climate Dynamics, 1–15.
Tseng, K.-C., Sui, C.-H., & Li, T. (2015). Moistening processes for Madden-Julian oscillations during DYNAMO/CINDY. Journal of Climate, 28(8), 3041–3057.
Tulich, S., & Kiladis, G. (2021). On the regionality of moist Kelvin waves and the MJO: The critical role of the background zonal flow. Journal of Advances in Modeling Earth Systems, 13(9), e2021MS002528.
Waliser, D., Sperber, K., Hendon, H., Kim, D., Maloney, E., Wheeler, M., Weickmann, K., Zhang, C., Donner, L., Gottschalck, J., et al. (2009). MJO simulation diagnostics. Journal of Climate, 22(11), 3006–3030.
Wang, B., Liu, F., & Chen, G. (2016). A trio-interaction theory for Madden-Julian Oscillation. Geoscience Letters, 3(1), 1–16. 53
Wheeler, M. C., & Hendon, H. H. (2004). An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Monthly Weather Review, 132(8), 1917–1932.
Wild, M., Folini, D., Hakuba, M. Z., Schär, C., Seneviratne, S. I., Kato, S., Rutan, D., Ammann, C., Wood, E. F., & König-Langlo, G. (2015). The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics, 44(11), 3393–3429.
Wolding, B. O., Maloney, E. D., Henderson, S., & Branson, M. (2017). Climate change and the Madden-Julian Oscillation: A vertically resolved weak temperature gradient analysis. Journal of Advances in Modeling Earth Systems, 9(1), 307–331.
Wood, R., & Field, P. R. (2011). The Distribution of Cloud Horizontal Sizes. Journal of Climate, 24(18), 4800–4816.
Yanai, M., Esbensen, S., & Chu, J.-H. (1973). Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. Journal of Atmospheric Sciences, 30(4), 611–627.
Zhang, B., Kramer, R. J., & Soden, B. J. (2019). Radiative feedbacks associated with the Madden-Julian oscillation. Journal of Climate, 32(20), 7055–7065.
Zhang, C. (2013). Madden–Julian Oscillation: Bridging Weather and Climate. Bulletin of the American Meteorological Society, 94(12), 1849–1870.
Zhang, Q., Li, T., & Liu, J. (2019). Contrast of Evolution Characteristics of Boreal Summer and Winter Intraseasonal Oscillations over Tropical Indian Ocean. Journal of Meteorological Research, 33(4), 678–694.
Zhao, C., & Li, T. (2019). Basin dependence of the MJO modulating tropical cyclone genesis. Climate Dynamics, 52(9), 6081–6096.
Zhao, M., Golaz, J.-C., Held, I., Guo, H., Balaji, V., Benson, R., Chen, J.-H., Chen, X., Donner, L., Dunne, J., et al. (2018). The GFDL global atmosphere and land model AM4. 0/LM4. 0: 2. Model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling Earth Systems, 10(3), 735–769.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2023-4-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明