參考文獻 |
Adames, A. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017: Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2. Journal of Advances in Modeling Earth Systems, 9, 2946–2967.
Baranowski, D. B., M. K. Flatau, and A. J. Matthews, 2016: Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophys. Res. Lett., 43, 8269–8276.
Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian ocean tropical cyclones by the Madden–Julian Oscillation and convectively coupled equatorial Waves. Mon. Wea. Rev., 134, 638–656.
Chen, Y.-C., and J.-Y. Yu, 2021: Modes of tropical convection and their roles in transporting moisture and moist static energy: contrast between deep and shallow convection. Clim. Dyn., 57, 1789–1803.
Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira-Sugiyama cumulus parameterization. Part II: understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615–639.
Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44, 2324–2340.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. R. Met. Soc., 106, 447–462.
Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 2707–2721.
Hayashi, Y.-Y., 1970: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan, 48, 140–160.
Hersbach, H., and Coauthors, 2020: Global reanalysis: Goodbye ERA-interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24.
Huang, P., and R. Huang, 2011: Climatology and interannual variability of convectively coupled equatorial waves activity. J. climate, 24, 4451–4465.
Inoue, K., and L. Back, 2015: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 4148–4166.
Inoue, K., A. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: new diagnoses of vertical velocity profiles in the wavenumber-frequency domain. J. Atmos. Sci., 77, 2139–2162.
Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2017: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: slow Kelvin waves as building blocks. Clim. Dyn., 50, 4211–4230 (2018).
Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian Oscillation. J. Atmos. Sci., 62, 2790–2809.
Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003.
Lindzen, R. S., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31, 156–179.
Lubis, S. W., and R. R. Muhamad, 2020: Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. Quart. J. R. Met. Soc., 41, 2418–2440.
Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. climate, 22, 711–729.
Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.
Masunaga, H., and T. S. L’Ecuyer, 2014: A mechanism of tropical convection inferred from observed variability in the moist static energy budget. J. Atmos. Sci., 71, 3747–3766.
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 25–43.
Mayta, V. C., G. N. Kiladis, J. Dias, P. L. S. Dias, and M. Gehne, 2021: Convectively coupled Kelvin waves over tropical South America. J. Climate, 34, 6531–6547.
Mayta, V. C., A. F. Adames, and F. Ahmed, 2022: Westward-propagating moisture mode over the tropical Western Hemisphere. Geophys. Res. Lett., 49, e2022GL097799.
Mayta, V. C., and A. F. Adames, 2023: Moist Thermodynamics of Convectively Coupled Waves over the Western Hemisphere. J. Climate, 36, 2765–2780.
Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the west African monsoon. J. Climate, 20, 1487–1503.
Nakamura, Y., and Y. N. Takayabu, 2022: Convectively couplings with equatorial Rossby waves and equatorial Kelvin waves. Part I: coupled wave structures. J. Atmos. Sci., 79, 247–262.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12.
Neelin, J. D., and I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348.
Neena, J. M., E. Suhas, and X. Jiang, 2022: Modulation of the Convectively Coupled Kelvin Waves by the MJO over Different Domains. J. Climate, 35, 3425–3439.
Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 1342–1359.
Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden-Julian Oscillation. J. Atmos. Sci., 69, 2097–2106.
Roundy, P. E., 2019: Interpretation of the spectrum of eastward-moving tropical convective anomalies. Quart. J. R. Met. Soc., 146, 795–806.
Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 30–53.
Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 1655–1668.
Sumi, Y., and H. Masunaga, 2016: A Moist Static Energy Budget Analysis of Quasi-2-Day Waves Using Satellite and Reanalysis Data. J. Atmos. Sci., 73, 743–759.
Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433–449.
Takayabu, Y. N., K.-M. Lau, and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 1892–1913.
Tsai, Y.-C., and J.-Y. Yu, 2023: Contrasting the energy recharge-discharge cycle between propagating and eastward-decaying Madden-Julian Oscillation events. Clim. Dyn., 59, 1–15.
Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: a three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 1108–1124.
Wang, H., and R. Fu, 2007: The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Climate, 20, 1188–1201.
Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dynamics of Atmospheres and Oceans, 76, 116–126.
Wang, L., and T. Li, 2017: Roles of convective heating and boundary-layer moisture asymmetry in slowing down the convectively coupled Kelvin waves. Clim. Dyn., 48(7–8), 2453–2469.
Wheeler, M. C., and G. N. Kiladis, 1999: Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain. J. Atmos. Sci., 56(3), 374–399.
Wheeler, M. C., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57(5), 613–639.
Wheeler, M. C., and H. Nguyen, 2015: TROPICAL METEOROLOGY AND CLIMATE | Equatorial Waves. In Encyclopedia of Atmospheric Sciences, 102–112.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.
Yang, G.-Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J. Atmos. Sci., 64, 3406–3423.
Yang, G.-Y., B. Hoskins, and J. Slingo, 2007b: Convectively coupled equatorial waves. Part II: propagation characteristics. J. Atmos. Sci., 64, 3424–3437.
Yang, G.-Y., and B. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., 70, 3513–3532. |