參考文獻 |
Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of an island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130-155.
Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 2682–2702.
Chan, J. C.-L., 1984: An observational study of the physical processes responsible for tropical cyclone motion. J. Atmos. Sci., 41, 1036-1048.
Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317-1336.
Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Climate, 26, 4138-4147.
Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255-1270.
Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.
Chen, S.-Y., C.-P. Shih, C.-Y. Huang, and W.-H. Teng, 2021: An impact study of GNSS RO data on the prediction of Typhoon Nepartak (2016) using a multiresolution global model with 3D-Hybrid data assimilation. Wea. Forecasting, 36, 957-977.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016-1022.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022-3036.
Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006-1022.
Hsu, L.-H., S.-H. Su, R. G. Fovell, and H.-C. Kuo, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 1495-1510.
Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016a: On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. J. Atmos. Sci., 73, 3157-3180.
Huang, C.-Y., I.-H. Wu, and L. Feng, 2016b: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. J. Geophys. Res. Atmos., 121, 12 647-12676.
Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-F. Hsu, 2017: Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Mon. Wea. Rev., 145, 1691-1716.
Huang, C.-Y., C.-H. Huang, W. C. Skamarock, 2019: Track deflection of Typhoon Nesat (2017) as realized by multiresolution simulations of a global model. Mon. Wea. Rev., 147, 1593-1613.
Huang, C.-Y., C.-W. Chou, S.-H. Chen, and J.-H. Xie, 2020a: Topographic rainfall of tropical cyclones past a mountain range as categorized by idealized simulations. Wea. Forecasting, 35, 25-49.
Huang, C.-Y., T.-C. Juan, H.-C. Kuo, and J.-H. Chen, 2020b: Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Mon. Wea. Rev., 148, 4519-4544.
Huang, C.-Y., J.-Y. Lin, W. C. Skamarock, and S.-Y. Chen, 2022a: Typhoon forecasts with dynamic vortex initialization using an unstructured mesh global model. Mon. Wea. Rev., 150, 3011-3030.
Huang, C.-Y., S.-H. Sha, and H.-C. Kuo, 2022b: A modeling study of Typhoon Lekima (2019) with the topographic influence of Taiwan. Mon. Wea. Rev., 150, 1993-2011.
Huang, K.-C., and C.-C. Wu, 2018: The impact of idealized terrain on upstream tropical cyclone track. J. Atmos. Sci., 75, 3887-3910.
Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708-1727.
Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615.
Li, R.-C., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 2919-2930.
Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534-562.
Lin, Y.-L., D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 2929-2950.
Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849-1866.
Lin, Y.-L., and L. C. Savage, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range. J. Atmos. Sci., 68, 2095-2106.
Lin, Y.-L., S.-H. Chen, and L. Liu, 2016: Orographic influence on basic flow and cyclone circulation and their impacts on track deflection of an idealized tropical cyclone. J. Atmos. Sci., 73, 3951-3974.
Park, S.-H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models. Mon. Wea. Rev., 142, 3614-3634.
Sakaguchi, K., L. R. Leung, C. Zhao, Q. Yang, J. Lu, and S. Hagos, 2015: Exploring a multiresolution approach using AMIP simulations. J. Climate, 28, 5549-5574.
Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49, 140-153.
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN- 4751STR, 113 pp.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.
Skamarock, W. C., and Coauthors, 2021: A Description of the Advanced Research WRF Model Version 4.3. NCAR Tech. Note NCAR/TN-556+STR.
Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578-1589.
Tang, C. K., and J. C. L. Chan, 2016a: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different sizes. Quart. J. Roy. Meteor. Soc., 142, 793-804.
Tang, C. K., and J. C. L. Chan, 2016b: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different steering flow strengths. Quart. J. Roy. Meteor. Soc., 142, 3211-3221.
Wang, Y., and G. J. Holland, 1996: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 3737-3756.
Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899-1911.
Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane–environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264-2282.
Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032-3050.
Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan topography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193-3212.
Yeh, T.-C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan topography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213-3233.
Yu, H., W. Huang, Y. H. Duan, J. C. L. Chan, P. Y. Chen, and R. L. Yu, 2007: A simulation study on pre-landfall erratic track of typhoon Haitang (2005). Meteor. Atmos. Phys., 97, 189-206.
Zarzycki, C. M., and C. Jablonowski, 2015: Experimental tropical cyclone forecasts using a variable-resolution global model. Mon. Wea. Rev., 143, 4012-4037.
Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 1221-1239. |