參考文獻 |
Busireddy, N. K. R., K. Ankur, K. K. Osuri, S. Sivareddy, and D. Niyogi, 2019: The response of ocean parameters to tropical cyclones in the Bay of Bengal. Quarterly Journal of the Royal Meteorological Society, 145, 3320–3332.
Cao, X., T. Li, M. Peng, W. Chen, and G. Chen, 2014: Effects of Monsoon Trough Interannual Variation on Tropical Cyclogenesis over the Western North Pacific. Geophys. Res. Lett., 41.
Cecil, D.J., and E.J. Zipser, 1999: Relationships between Tropical Cyclone Intensity and Satellite-Based Indicators of Inner Core Convection: 85-GHz Ice-Scattering Signature and Lightning. Monthly Weather Review, 127, 103-123.
Chen, G., C. Wu, and Y. Huang., 2018: The Role of Near-Core Convective and Stratiform Heating/Cooling in Tropical Cyclone Structure and Intensity. J. Atmos. Sci., 75, 297–326.
Feng, T., G.-H. Chen, R.-H. Huang, and X.-Y. Shen, 2014: Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions. Int. J. Climatol., 34, 216-227.
Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 1067–1080.
Fu, J., B. Wang, Y. Chen, and Q. Ma, 2018: The influence of continental air masses on the aerosols and nutrients deposition over the western North Pacific. Atmospheric Environment, 172, 1-11.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
——, 1975: Tropical cyclone genesis. Atmospheric Science Paper 234, 121 pp. [Available from Dept. of Atmos. Sci., Colorado State University, Fort Collins, CO 80523.].
Hansen, J.E., and L.D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527-610.
Iwabuchi, H., N.S. Putri, M. Saito, Y. Tokoro, M. Sekiguchi, P. Yang, and B.A. Baum, 2018: Cloud property retrieval from multiband infrared measurements by Himawari-8. J. Meteor. Soc. Jpn., 96, 27.
Leslie, L.M., and G.J. Holland, 1995: On the bogussing of tropical cyclones in numerical 526 models: A comparison of vortex profiles. Meteorol. Atmos. Phys., 56, 101-110.
Lin, I., C. Wu, I. Pun, and D. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Mon. Wea. Rev., 136, 3288–3306.
Lin, I.-I., S.J. Camargo, C.M. Patricola, J. Boucharel, S. Chand, P. Klotzbach, J.C.L. Chan, B. Wang, P. Chang, T. Li, and F.-F. Jin., 2020: ENSO and Tropical Cyclones. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 377–408.
Lin, Y.-L., H.-F. Teng, Y.-H. Hsieh, and C.-S. Lee, 2021: Tropical Cyclone Formation within Strong Northeasterly Environments in the South China Sea. Atmosphere, 12, 1147.
Liu, C.-Y., J. P. Punay, C.-C. Wu, K.-S. Chung, and P. Aryastana, 2022: Characteristics of deep convective clouds, precipitation, and cloud properties of rapidly intensifying tropical cyclones in the western North Pacific. Journal of Geophysical Research: Atmospheres, 127, e2022JD037328.
Liu, Q., X. Jiang, S.-P. Xie, and W. T. Liu, 2004: A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability, J. Geophys. Res., 109, C07012.
Mecikalski, J. R., P. D. Watts, and M. Koenig, 2011: Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res., 102, 175-190.
Molinari, J., J. Frank, and D. Vollaro, 2013: Convective Bursts, Downdraft Cooling, and Boundary Layer Recovery in a Sheared Tropical Storm. Mon. Wea. Rev., 141, 1048–1060.
Peng, M. S., B. Fu, T. Li, and D. E. Stevens, 2012: Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 1047–1066.
Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 9395–9414.
Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol Effects on Microstructure and Intensity of Tropical Cyclones. Bull. Amer. Meteor. Soc., 93, 987–1001.
Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud–infrared radiation feedback in tropical cyclone development. Proc. Natl. Acad. Sci. USA, 117, 27 884–27 892.
Senf, F., and H. Deneke, 2017: Satellite-Based Characterization of Convective Growth and Glaciation and Its Relationship to Precipitation Formation over Central Europe. J. Appl. Meteor. Climatol., 56, 1827–1845.
Takahashi, C., M. Watanabe, and M. Mori, 2017: Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophysical Research Letters, 44, 9496–9504.
Tan, J., Q. Yang, J. Hu, Q. Huang, and S. Chen, 2022: Tropical Cyclone Intensity Estimation Using Himawari-8 Satellite Cloud Products and Deep Learning. Remote Sens. 14, 812.
Yoshida, R., and H. Ishikawa, 2013: Environmental Factors Contributing to Tropical Cyclone Genesis over the Western North Pacific. Mon. Wea. Rev., 141, 451–467.
Zawislak, J., and E. J. Zipser, 2014: A Multisatellite Investigation of the Convective Properties of Developing and Nondeveloping Tropical Disturbances. Mon. Wea. Rev., 142, 4624–4645.
Zehr, R. M., 1992: Tropical cyclones in the western North Pacific basin: 1959-1988. Journal of Climate, 5(12), 1466-1479. |