博碩士論文 110322031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.133.125.148
姓名 陳子文(Zi-Wen Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心模型試驗探討低相對密度浸水緩坡受震之變形行為
(Centrifuge modeling on deformation behaviors of low relative density submerged gentle slope)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 台灣位處於菲律賓海板塊與歐亞板塊交界帶,在不穩定的板塊邊界導致地震頻繁,地震可能誘發海底山崩進而引起海嘯。海底緩坡崩塌除了破壞海底設施(如海底電纜、海底管線等),造成經濟損失之外,也可能威脅沿海居民生命安全。西元2006年屏東外海發生海底山崩事件,泥沙崩塌造成海底纜線造成纜線多處斷裂,嚴重影響跨國通訊與電子交易,造成經濟損失。目前人們對海底緩坡受震後之沉積型態了解有限,因此本研究以離心模型試驗以浸水邊坡探討海底緩坡受震之變形行為。
本研究利用中央大學地工離心機進行一系列之動態離心模型試驗,在40 g離心力場中,以浸水邊坡模擬海底緩坡的破壞行為,並且探討輸入不同基盤震動對浸水緩坡受震之變形行為的影響。試驗選用石英砂,以相對密度30 %模擬試體高度10 m且坡度為10°與20°之緩坡土層。五組試驗輸入基盤震動頻率與作用週數皆為1 Hz、15-cycles之正弦波,並透過加速度計、孔隙水壓計、位移計、地表位移計與地中位移計記錄海底緩坡之受震反應。
試驗結果顯示:(1) 10度浸水緩坡之試驗結果得知,累積絕對速度為9.11 m/s的情況下,地表最大位移為2.28 m,受震後試體坡度為2度;(2) 10度浸水緩坡之試驗結果得知,累積絕對速度分別為4.23 m/s與9.11 m/s(增加2.15倍),地表最大水平位移分別為1.80 m和2.28 m(增加1.27倍),震後試體坡度分別為6.6度、2.4度;(3)不同坡度(10度、20度)之試驗結果得知,累積絕對速度7.21 m/s與9.11 m/s(增加1.26倍),震後地表最大水平位移分別2.28 m和2.78 m。
摘要(英) Taiwan is located at the convergent zones between the Philippine Sea Plate and the Eurasian Plate. Such a complicated convergence has caused frequent earthquakes. The earthquakes probably triggers submarine landslides and then generates near-source tsunamis. Submarine landslides may destroy underwater infrastructure, causing huge economic losses, the tsunami could also be a serious threat to the coastal communities and infrastructures. In 2006, submarine landslide occurred offshore Pingtung; sediments impacted and broke submarine communication cables, affecting international communications and electronic transactions and causing economic losses. At present, the information on the process and deposition of submarine landslides is often limited. This study tries to observe deformation behaviors of submerged gentle slope by centrifuge modeling.
This study conducted five dynamic centrifuge modeling tests to simulate the deformation behaviors of submerged gentle slope by NCU geotechnical centrifuge at 40 g acceleration field. Simulating the failure behavior of submerged slopes with submerged gentle slope. The silica sand is selected for preparing the slope with target relative density of 30%. A submerged gentle slope with 10 m in height is modeled in this study. The slope of the test 10°and 20° A five dynamic centrifuge modeling tests with a frequency content of 1 Hz and 15 cycles sine wave. In this study, accelerometers, pore water pressure transducers, linear variable displacement transformers (LVDTs), surface markers, and spaghetti are arranged to observe the deformation behaviors of submerged gentle slope.
From the test results, it shows that: (1) Under the condition of 10°submerged gentle slope and input base shaking(CAV=9.11 m/s), the maximum surface displacement is about 2.28 m, and the slope after the earthquake is about 2°. (2) Under 10°slope gradient, the cumulative absolute velocity is 4.23 m/s and 9.11 m/s (increased by 2.15 times), the maximum surface displacement is 1.80 m and 2.28 m (increases by 1.26 times), After the earthquake, the slope of the test is 6.6 º and 2.4 º. (3) Under the different slope gradient(10º、20º), when t the cumulative absolute velocity is 7.21 m/s and 9.11 m/s (increased by 1.26 times), the maximum surface displacement is 2.28 m and 2.78 m.
關鍵字(中) ★ 離心模型試驗
★ 浸水緩坡
★ 地表位移
關鍵字(英) ★ Centrifuge modeling
★ Submerged gentle slope
★ Surface displacement
論文目次 摘要 i
Abstract ii
目錄 v
圖目錄 viii
表目錄 xv
1 一、前言 1
1-1 研究背景與目的 1
1-2 研究方法 2
1-3 論文架構 3
2 二、文獻回顧 4
2-1 離心模型原理 4
2-1-1 離心模型相似律 5
2-1-2 動態離心模型縮尺率 7
2-2 土壤液化 8
2-2-1 土壤液化定義 8
2-2-2 土壤液化發生機制 8
2-2-3 土壤液化相關災害 10
2-3 海底邊坡之介紹 15
2-3-1 造成海底邊坡滑動發生機制 15
2-4 以離心模型試驗探討邊坡受震液化行為 16
3 三、試驗設備、試體製作與分析方法 21
3-1 試驗儀器及設備 21
3-1-1 中央大學地工離心機 21
3-1-2 單軸向振動台 22
3-1-3 資料擷取系統 27
3-1-4 固壁式蜂巢試驗箱 (Rigid container) 27
3-1-5 霣降設備 28
3-1-6 各式量測工具 30
3-2 試驗配置 35
3-3 試驗材料 38
3-4 試體準備 40
3-4-1 試驗箱組立 40
3-4-2 試體製作 41
3-4-3 飽和試體準備 46
3-4-4 試體飽過程 47
3-4-5 離心模型試驗前準備工作 49
3-5 試驗分析方法 51
3-5-1 相機魚眼校正 51
3-5-2 主要震動事件分析及量化 53
3-5-3 顯著頻率計算 55
3-5-4 轉換函數計算 56
3-5-5 累積絕對速度衰減效應 56
3-5-6 土壤液化評估標準 57
3-5-7 地表沉陷及隆起量分析 58
3-5-8 地表及地中水平位移分析 58
4 四、試驗結果與討論 60
4-1 試驗規劃與流程 60
4-2 試驗結果 61
4-2-1 試體特性分析 61
4-2-2 10º SS_0.145 g 67
4-2-3 20º SS_0.090 g 79
4-2-4 10º SS_0.155 g 91
4-2-5 10º SS_0.050 g 107
4-2-6 10º SS_0.135 g 123
4-3 結果綜合討論 140
4-3-1 主要震動事件之量化 140
4-3-2 土層累積絕對速度衰減倍率 141
4-3-3 地表垂直位移量分析 142
4-3-4 試體經主要震動事件之前後比較 145
4-3-5 地表位移計比較 150
4-3-6 地表位移之誤差百分比 153
4-3-7 地中位移之破壞範圍比較 155
4-4 小結 158
5 五、結論與建議 160
5-1 結論 160
5-2 建議 161
參考文獻 162
參考文獻 [1] Hazen, A., “Hydraulic-fill dams,” Transactions of the American Society of Civil
Engineers, Vol. 83, pp.1717-1745, (1920).
[2] Rauch, A. F., “An empirical method for predicting surface displacements due to liquefaction-induced lateral spreading in earthquakes,” Ph.D. dissertation, Virginia Polytechnic Institute and State University (1997).
[3] Das, B. M., Principles of foundation Engineering, Brooks/Cole Publishing Company, Pacific Grove, California (2008).
[4] Varnes, D. J., “Landslide and Engineering Practice, Highway Research Board Special Report,” Vol.29, pp.20–47 (1958).
[5] Seed, H. B., Martin, P. P., Lysmer, J., “Pore-water pressure changes during soil liquefaction,” Geotechnical Engineering Division, Vol 102, pp. 323-346 (1976).
[6] Ishihara, K., “Stability of nature deposits during earthquake,” Proceedings. of 11th international conference on soil Mechanics and Foundation Engineering., San Francisco, Vol.1, pp.321-376 (1985).
[7] Arulmoli, K., Muraleetharan, K. K., Hossain, M. M., Fruth, L.S., “Verification of liquefaction analysis by centrifuge studies laboratory program soil data. Report,” The Earth Technology Corporation (1992).
[8] Vanneste, M., Sultan, N., Garziglia, S., Forsberg, C. F., L′Heureux J. S., “Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations,” Marine Geology, Vol.352, pp.183-214 (2014).
[9] Taboada-Urtuzuastegui, V. M., Martinez-Ramirez, G., Abdoun, T., “Centrifuge modeling of seismic behavior of a slope in liquefiable soil,” Soil Dynamics and Earthquake Engineering, Vol.22, pp.1043-1049 (2002).
[10] Adamidis, O., Madabhushi, G. S. P., “Use of viscous pore fluids in dynamic centrifuge modelling, International Journal of Physical Modelling in Geotechnics,” Vol 15, pp.141-149, (2015).
[11] Kramer, S. L., Geotechnical Earthquake Engineering, Prentice Hall, NewJersey (1996).
[12] Obermeier, S. F., “Use of liquefaction-induced features for paleoseismic analysis — an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes,” Engineering Geology, Vol.44, pp.1-76 (1996).
[13] Manandhar, S., Kim, S. N., Ha, J. G., Ko, K. W., Lee, M. G., Kim, D. S., “Liquefaction evaluation using frequency characteristics of acceleration records in KAIST centrifuge tests for LEAP,” Soil Dynamics and Earthquake Engineering, Vol.140 (2021).
[14] Carey, T. J., Chiaradonna, A., Love, N. C., Wilson, D. W., Ziotopoulou, K., Martinez, A., DeJong, J. T., “Effect of soil gradation on embankment response during liquefaction: A centrifuge testing program,” Soil Dynamics and Earthquake Engineering, Vol.157 (2022).
[15] Youd, T. L., “Geologic effects-liquefaction and associated ground failure,” Proceedings of the Geologic and Hydraulic Hazards Training Program, pp.210-232 (1984).
[16] Korre, E., Abdoun, T., Zeghal, M., “Liquefaction of a sloping deposit: LEAP-2017 centrifuge tests at Rensselaer Polytechnic Institute,” Soil Dynamics and Earthquake Engineering, Vol.134 106152 (2020).
[17] 林美聆、陳榮河、廖洪鈞、周功台、翁作新、陳正興,「九二一集集大地震大地工程震災調查報告」,國家地震工程研究中心技術報告,(2000)。
[18] 黃安斌,「集集地震土壤液化總評估研究」,科學發展月刊,第29卷,第11期,第810-814頁 (2001)。
[19] 黃一剛,「台灣西南海域非活動型大陸邊緣海底塊體運動之探討」,碩士論文,國立台灣大學海洋研究所,台北(2008)。
[20] 胡林楙,「基盤土壤液化引致的側潰對上方土堤的影響及其改善對策」,碩士論文,國立中央大學土木工程學系,桃園(2017)。
[21] 廖庭緯,「以動態離心模型試驗模擬緩坡純砂因液化導致側潰時之土壤特性」,碩士論文,國立中央大學土木工程學系,桃園(2018)。
[22] 石瑞銓、吳毓泰、陳芷辰、許崑泉,「重複發生的土壤液化事件」,科學發展月刊,第574期,第85-89頁 (2020)。
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明