博碩士論文 107382606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.226.248.77
姓名 陳明景(Minh-Canh Tran)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心模型模擬不同波浪條件下的河堤侵蝕過程
(Riverbank erosion under various wave conditions by centrifuge modeling)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 河岸侵蝕對附近居民來說,是對他們的生命財產造成嚴重影響的自然災害之一。這種現象是河岸材料在被軟化及沖刷下而導致,其中影響因素有水流、船造浪、農業活動和河岸基礎設施等。由於土壤和水的界面十分複雜,因此土壤力學與流體力學間相互作用的研究十分少見。本研究目標為評估河岸在波浪作用下的力學行為模式。透過離心機模型試驗模擬,以評估波浪的動態壓力和侵蝕率之間的關係。在20g 人造加速度的離心機模型試驗結果中,模擬出了原型高度0.22-0.24 公尺的波浪。在靜水位高度,量測到的最大衝擊壓力約為28 kPa。試驗結果也表示波浪的頻率變化對衝擊壓力的影響並不大。
此外,侵蝕過程分為三個階段:侵蝕階段、張力裂縫階段和破壞階段。根據研究結果顯示,侵蝕率與波浪的衝擊壓力和土壤強度有關。當河岸材料的黏土占比增加時,侵蝕率會下降,在河岸材料侵蝕率為0.078 公尺/小時的條件下,“黏土區”的臨界侵蝕距離為2 -2.4 公尺。
摘要(英) Riverbank erosion is one of the natural disasters causing significant negative influences on the economy and life of people living near riverbanks. This phenomenon is triggered by softening and washing materials of the riverbank under factors such as water current, ship - waves, agricultural activities, and infrastructures on the riverbank. The interface of soil and water is so complicated that there is rarely research to study the interaction of hydrodynamics and soil mechanics. This study aims to evaluate the mechanical behavior of the riverbank under the effect of water waves. Several centrifuge simulations were performed to estimate the relation between the wave dynamic pressure and the erosion rate. The results indicated that the river waves could be generated with 0.22 m - 0.24 m in prototype under the artificial acceleration of 20 g. The maximum impact pressure is around 28 kPa at the still water level. The frequencies of waves are not essential to affect the impact pressure. Additionally, the erosion process is divided into three stages: erosion stage, tension crack stage, and failure stage. Based on the results, the erosion rate is dependent on the impact pressure of waves and soil strength. The erosion rate is decreased when the percentage of clay is increased, with the critical erosion distance of the “clay zone” of 2 m - 2.4 m and the erosion rate of 0.078 m/h.
關鍵字(中) ★ 河堤
★ 侵蝕
★ 離心模型
關鍵字(英) ★ Riverbank
★ erosion rate
★ centrifuge modeling.
論文目次 ABSTRACT i
摘要 ii
DECLARATION iii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER 1: INTRODUCTION 1
1.1 Definition of phenomenon 1
1.2 Aims of research 6
1.3 Content of the dissertation 8
CHAPTER 2: LITERATURE REVIEW 10
2.1 Overview the definition of slope stability 10
2.3 Overview the stability of the riverbank 17
2.4 Overview the reasons of riverbank failure 22
2.4.1 Flow hydraulic. 22
2.4.2 Water level 25
2.4.3 Tension crack 31
2.4.4 Cold Climate 33
2.4.5 Waves 36
CHAPTER 3: TECHNIQUE METHOD AND SOIL MATRIALS 44
3.1 Centrifuge technique 44
3.1.1 Introduction 44
3.1.2 Principle of centrifuge technique 45
3.2 Apparatus and equipment 48
3.2.1 NCU’s centrifuge 48
3.2.2 Data acquisition system 51
3.2.3 Wave container 52
3.2.4 Water proof cylinder 54
3.2.5 Observation system 55
3.2.6 Wave pressure measurement 56
3.2.7 Pore water pressure 58
3.2.8 Water level sensor 60
3.2.9 Torvane 61
3.2.8 Magnetic valve 62
3.3 Test materials 64
3.3.1 Soil classification 64
3.3.2 Soil properties 65
3.3.3 Compaction test 67
3.3.4 Direct shear test 68
CHAPTER 4: EXPERIMENT RESULTS: WAVE GENERATION AND EROSION TEST 70
4.1 Wave generation system 72
4.1.1 Model preparation 72
4.1.2 Test results 76
4.2 Dynamic pressure test 81
4.3 Erosion test 91
4.3.1 Test preparation 91
4.3.2 Test results 95
CHAPTER 5: DISSERTATION DISCUSION 117
5.1 Wave system 117
5.2 Erosion stability 123
CHAPTER 6: DISSERTATION CONCLUTIONS 139
6.1 Conclusions 139
6.2 Recommendations 141
References 142
參考文獻 [1] Krystian W. P., (2003) Bank Erosion in Mekong Delta and along Red River in Vietnam. The Department of Dike Management and Flood Control (DDMFC) of the Ministry of Agriculture and Rural Development (MARD) requested the Rijkswaterstaat (Dutch Public Works Dpt.).
[2] Https://www.thethirdpole.net/en/livelihoods/in-vietnam-mekong-delta-sand-mining-means-lost-homes-and-fortunes.
https://www.vietnamplus.vn/video-sat-lo-dat-o-bo-song-hau-con-dien-bien-nghiem-trong/442870.amp.
[3] Choi, C.E., Cui, Y., Au, K.Y.K., Liu, H., Wang, J., Liu, D., and Wang, H., (2018) Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China. Water (Switzerland), Vol. 10, No. 3, pp. 1-12.
[4] Zheng, S., Xu, Y.J., Chen, H., Wang, B., Xu, W., (2018) Riverbed erosion of the final 565 kilometers of the Yangtze River (Changjiang) following construction of the Three Gorges Dam. Scientific report, No. 7, pp. 1-11.
[5] Yan, G., Cheng, H., Jiang, Z., Teng, L., Tang, M., Shi, T., Jiang, Y., Yang, G., (2022) Recognition of Fluvial Bank Erosion Along the Main Stream of the Yangtze River. Engineering, Vol. 19, pp. 50-61.
[6] Jia, D., Shao, X., Wang, H., Zhou, G., (2010) Three-dimensional modeling of bank erosion and morphological changes in the Shishou bend of the middle Yangtze River. Advances in Water Resources, Vol. 33, No. 3, pp. 348-360.
[7] Paul, B. K., Rahman, M.K., Crawford, T., Curtis, S., Miah, Md. G., Islam, M.R., (2020) Explaining mobility using the Community Capital Framework and Place Attachment concepts: A case study of riverbank erosion in the Lower Meghna Estuary, Bangladesh. Applied Geography, Vol.125, No. 3, pp. 102199.
[8] Mondal, Md.S.H., Murayama, T., and Nishikizawa, S., (2021) Examining the determinants of flood risk mitigation measures at the household level in Bangladesh. International Journal of Disaster Risk Reduction, Vol. 64, No. 3, pp. 102492.
[9] Oberhagemann, K., Hossain, Md.M., (2011) Geotextile bag revetments for large rivers in Bangladesh. Geotextiles and Geomembranes, Vol. 29, No. 4, pp. 402-414.
[10] Prowse, T.D., and Culp, J.M., (2003) Ice breakup: A neglected factor in river ecology. Canadian Journal of Civil Engineering, Vol. 30, No. 1, pp. 128-144.
[11] Chassiot, L., Lajeunesse, P., and Bernier, J.F., (2020) Riverbank erosion in cold environments: Review and outlook. Earth-Science Reviews, Vol. 207, No. 103231.
[12] Vandermause, R., Harvey, M., Zevenbergen, L., and Ettema, R., (2021) River-ice effects on bank erosion along the middle segment of the Susitna river, Alaska. Cold Regions Science and Technology, Vol. 185, No. 103239.
[13] Beltaos et al. (2018) Erosion potential of dynamic ice breakup in Lower Athabasca River. Part II: Field data analysis and interpretation. Cold Regions Science and Technology, Vol. 148, No. 4, pp. 77-87.
[14] Takahashi, H., Morikawa, Y., Kashima, H., (2019) Centrifuge modelling of breaking waves and seashore ground. International Journal of Physical Modelling in Geotechnics, Vol. 19, No. 3, pp. 115-127.
[15] Iai S., Ueda K., Tobita T., (2018) Centrifuge model tests and large deformation analyses of a breakwater subject to combined effects of Tsunami. 6th International Conference on Earthquake Geotechnical Engineering (6ICEGE), pp. 536-537
[16] Exton, M., Harry, S., Kutter, B., Mason, H. B., and Yeh, H., (2019) Simulating Tsunami Inundation and Soil Response in a Large Centrifuge. Scientific reports, Vol. 9, No. 1, pp. 11138.
[17] Lim, K., Li, A.J., Schmid, A., and Lyamin, A.V., (2017) Slope stability assessments using finite-element limit-analysis methods. International Journal of Geomechanics, Vol. 17, No. 2, pp. 1-8.
[18] Darby, S.E., Thorne, C.R., (1996) Development and testing of riverbank-stability analysis. Journal of Hydraulic Engineering, Vol. 122, No. 8, pp. 443-454.
[19] Thi, T.D., Minh, D.D., (2019) Riverbank stability assessment under river water level changes and hydraulic erosion. Water (Switzerland), Vol. 19, No. 12.
[20] Yu, M.H., Wei, H.Y., Wu, S.B., (2015) Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force. International Journal of Sediment Research, Vol. 30, No. 1, pp. 81-89.
[21] Simon et al. (2009) Quantifying reductions of mass-failure frequency and sediment loadings from stream banks using toe protection and other means: Lake Tahoe, United States. Journal of the American Water Resources Association, Vol. 45, No. 1, pp. 170-186.
[22] Rinaldi, M., Mengoni, B., Rinaldi, M., Mengoni, B., Luppi, L., Darby, S.E., Mosselman, E., (2008) Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resources Research, Vol. 44, No. 9, pp. 1-17.
[23] Papanicolaou, A.N., Elhakeem, M., Hilldale, R., (2007) Secondary current effects on cohesive river bank erosion. Water Resources Research, Vol. 43, No. 12, pp. 1-14.
[24] Duan, G., Shu, A., Rubinato, M., Wang, S., Zhu, F., (2018) Collapsing mechanisms of the typical cohesive riverbank along the Ningxia–Inner Mongolia Catchment”. Water (Switzerland), Vol. 10, No. 9.
[25] Johansson et al. (2014) Influence of river level fluctuations and climate on riverbank stability. Licentiate thesis.
[26] Arai, R., Ota, K., Sato, T., Toyoda, Y., (2018) Experimental investigation on cohesionless sandy bank failure resulting from water level rising. International Journal of Sediment Research, Vol. 33, No. 1, pp.47-56.
[27] Okeke, C.A.U., Azuh, D., (2020) Assessment of land use impact and 1 seepage erosion contributions to seasonal variations in riverbank stability: the Iju River, SW Nigeria. Groundwater for Sustainable Development, Vol. 11, pp. 100448.
[28] Imanshoar, F., Tabatabai, M.R.M., (2012) Experimental study of subsurface erosion in river banks. Engineering and Technology, Vol. 6, No. 1 pp. 791-795.
[29] Duong, T.T., Komine, H., Do, M.D., Murakami, S. (2014) Riverbank stability assessment under flooding conditions in the Red river of Hanoi, Vietnam. Computers and Geotechnics, Vol. 61, pp. 178-189.
[30] Liang, C., Jaksa, M.B., Ostendorf, B., Kuo, Y.L. (2015) Influence of river level fluctuations and climate on riverbank stability. Computers and Geotechnics, Vol. 63, pp. 83-98.
[31] Nardi, L., Rinaldi, M., and Solari, L., (2010) Experimental observations on the retreat of non-cohesive river banks. River, Coastal and Estuarine Morphodynamics, pp. 89-96.
[32] Samadi, A., and Amiri-Tokaldany, E., (2013) Experimental and numerical investigation of the stability of overhanging riverbanks. Geomorphology, Vol. 184, pp. 1-9.
[33] Taghavi, M., Dovoudi, M.H., Amiri-Tokaldany, E., and Darby, S.E., (2010) An analytical method to estimate failure plane angle and tension crack depth for use in riverbank stability analyses. Geomorphology, Vol. 123, No. 1, pp. 74-83.
[34] Chen, C.H., Hsieh, T.Y., Yang, J.C., (2017) Investigating effect of water level variation and surface tension crack on riverbank stability. Journal of Hydro-Environment Research, Vol. 15, pp. 41-53.
[35] Vandermause, R., Harvey, M., Zevenbergen, L., Ettema, R., (2021) River-ice effects on bank erosion along the middle segment of the Susitna river, Alaska. Cold Regions Science and Technology, Vol. 185, No. 12, pp. 103239.
[36] Chassiot, L., Lajeunesse, P., Bernier, J.F., (2020) Riverbank erosion in cold environments: Review and outlook. Earth-Science Reviews, Vol. 207, No. 4, pp. 103231.
[37] Prowse, T. D., Culp, Joseph M. 2003 “Ice breakup: A neglected factor in river ecology”. Canadian Journal of Civil Engineering, Vol. 30, No. 1, pp. 128-144.
[38] Schliewe, M.S., de Menezes, A.V., (2021) Experimental study of erosion by waves on the lakeshore of lateritic soils. Journal of Hydrology, Vol. 603, pp. 127004.
[39] Nguyen, S. H., Huynh, T.T., Bui, V.T., Ngo, V. D., (2021) The mechanism of riverbank erosion caused by ship-generated waves along Hau river’s entrance navigation channel, southern Vietnam. Lecture Notes in Civil Engineering, Vol. 144 LNCE, pp. 897-904.
[40] Qian, Q., Jao, M., Fox, J., (2016) Experimental study on shoreline erosion using the EM2 geo- model. Proceedings of the 2016 World Environmental and Water Resources Congress, No. 166742, pp. 324-333.
[41] Mahmoudi, K.S., Tomasicchio, G.R., D′Alessandro, F., Hassanabadi, L. (2019) River bank protection from ship-induced waves and river flow. Water Science and Engineering, Vol. 12, No. 2, pp. 129-135.
[42] Garnier, J., Gaudin, C., Springman, S.M., Culligan, P.J., Goodings, D., Konig, D., Kutter, B., Phillips, R., Randolph, M.F., Thorel, L. (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, Vol. 7, No. 3, pp. 01-23.
[43] Exton, M., Harry, S., Kutter, B., Mason, H. B., Yeh, H. (2019) Simulating tsunami inundation and soil response in a large centrifuge. Scientific reports, Vol. 9, No. 1, pp. 11138.
[44] Chu, C.R., Huynh, L.E., and Wu, T.R., (2022) Large Eddy Simulation of the wave loads on submerged rectangular decks. Applied Ocean Research, Vol. 120, pp. 103051.
[45] Zrostlík, Š., Bareš, V., Krupička, J., Picek, T. and Matoušek, V., (2015) One-dimensional velocity profiles in open-channel flow with intense transport of coarse sediment. EPJ Web of Conferences, Vol. 92, 02120.
[46] Thang, C.N., Hino, T., Lam, L.G., and Quang, C.N.X., (2020) Effects of ship waves on riverbank erosion in the Mekong delta : A case study in An Giang province. International Association of Lowland Technology, Vol. 22, pp. 24-31.
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明