博碩士論文 110322045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.191.225.216
姓名 曾品蓁(Pin-Chen Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用時域反射法於深地層處置場之緩衝材料熱-水及力學耦合實驗與數值模擬可行性評估
(Assessing the Feasibility of Thermo-Hydro-Mechanical Coupled Experiments and Numerical Simulations for Buffer Materials in Deep Geological Disposal Sites via Time Domain Reflectometry)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
★ Modification of TDR Penetrometer for Water Content Profile Monitoring★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例
★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling
★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試
★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例★ 深度學習與資料擴增於山崩監測預測之可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 核能發電為各國主要電力來源之一,但由於核能發電所產生之用過核子燃料具有高放射性和具衰變熱 (heat decay),而混凝土與緩衝材料介面之交互作用和未來受到地下水入侵,皆會造成內部結構及障壁功能的改變。目前國際間對於用過核子燃料之最終處置方式一致採「深地層處置」(Deep Geologic Disposal) 概念,並以工程障壁系統(Engineered Barrier System, EBS)阻止放射性核種遷移,主要受到四大因素影響,包含T熱學(Thermal)、H水力(Hydraulic)、M力(Mechanical)、C化學(Chemical)因素,稱為T-H-M-C耦合效應,將影響最終處置場之預期性能。
由於混凝土於高放處置場為封塞材料,長期受到地下水入侵,會使地下水中的鎂離子和混凝土中的鈣離子產生離子交換的情形,造成混凝土溶出鈣離子產生失鈣現象,而形成pH值較高的鹼性環境。研究結果顯示,當緩衝材料接觸pH值大於13之NaOH溶液,會使膨潤土回脹壓力下降,影響其安全性。
本研究以熱-水-力學耦合行為進行小型實驗以及數值模擬進行分析比對,以瞭解利用有限元素法模擬處置場緩衝材料之可行性。以加熱後進水之方式較符合處置場實際情形,及符合受鹼性環境影響緩衝材料回脹效果之耦合效應,使用pH值13之氫氧化鈉溶液進行小型耦合實驗,再以自來水做為入滲液體為小型耦合實驗對照組,皆以時域反射法(time domain reflectometry, TDR)做為實驗期間之含水量量測。而高塑性土壤並不適用於Topp et al.(1980)所建之一般土壤體積含水量計算方法,因此本研究建立膨潤土視介電常數-溫度-體積含水量三向圖供後續實驗計算,最後透過COMSOL有限元素程式模擬膨潤土受水分入侵之情形。由於三向圖換算體積含水量時主要假設乾密度固定狀態下,因此換算體積含水量產生誤差。本研究透過數值模擬考慮回脹應變設定和不同溫度下的吸力反應,了解緩衝材料於處置場中受到的物理變化,透過模擬乾密度結果配合試體拆卸後所量測得重量含水量,計算體積含水量與TDR量測結果比對,驗證數值模擬與TDR量測法於深地層處置應用之可行性。
摘要(英) Nuclear power generation is one of the main power sources for many countries, but the spent nuclear fuel it produces is highly radioactive and has heat decay. Interactions at the interface of concrete and buffer materials, as well as future groundwater intrusion, can cause changes in the internal structure and barrier function. Currently, the international consensus on the final disposal method for spent nuclear fuel is the concept of "Deep Geologic Disposal", using an Engineered Barrier System (EBS) to prevent the migration of radioactive species. This is primarily influenced by four major factors: Thermal (T), Hydraulic (H), Mechanical (M), and Chemical (C), collectively referred to as the THMC coupling effect, which will affect the expected performance of the final disposal site.
Due to the use of concrete as a sealant in high-level waste disposal sites, will undergo ion exchange due to long-term groundwater intrusion, resulting in calcium ions in the concrete dissolving, causing decalcification and creating a high pH alkaline environment. Research results show that when buffer material comes in contact with NaOH solution with pH greater than 13, the swelling pressure of the bentonite decreases, impacting its safety.
This study conducts a small-scale experiment and numerical simulation analysis to understand the feasibility of using the finite element method to simulate the buffering material in the disposal field. It was found that introducing water post-heating closely mirrors the actual scenario in the disposal field and corresponds to the swelling effect of the buffering material affected by an alkaline environment. A small-scale coupled experiment was conducted using a sodium hydroxide solution with a pH value of 13, with tap water used as the infiltrating fluid for the control group. All experiments employed the time domain reflectometry (TDR) method to measure water content during the experiment.The general soil water content calculation method proposed by Topp et al. (1980) is not applicable to high-plasticity soils. Therefore, this study established a three-way diagram of bentonite dielectric constant-temperature-volume water content for subsequent experimental calculations. Finally, the situation of bentonite being invaded by moisture was simulated using the COMSOL finite element program. When converting the volume water content from the three-way diagram, the main assumption was a fixed dry density state, which could lead to conversion errors. This study considered swelling strain settings and the response of suction at different temperatures through numerical simulation, understanding the physical changes that the buffering material undergoes in the disposal field. By comparing the volume water content calculated from the dry density results obtained from disassembling the specimen with the water content measured by TDR, the applicability of numerical simulation and TDR measurement method in deep geological disposal was validated.
關鍵字(中) ★ 深地層處置
★ 緩衝材料
★ 熱-水-力學耦合效應
★ TDR時域反射法
★ COMSOL有限元素模擬
關鍵字(英) ★ Deep Geologic Disposal
★ Buffer Materials
★ Thermal-Hydraulic- Mechanical Coupling Effect
★ Time Domain Reflectometry (TDR)
★ COMSOL Finite Element Simulation
論文目次 摘要 ii
ABSTRACT iv
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 5
2.1 高放射性廢棄物處置概念 5
2.2 高放射性廢棄物緩衝材料特性 6
2.2.1 緩衝材料所具備功能 6
2.2.2 膨潤土基本特性 8
2.2.3 膨潤土劣化性質 10
2.3 緩衝材料與近場環境之交互作用 11
2.3.1 膨潤土與地下水之交互作用 11
2.3.2 膨潤土與混凝土之交互作用 13
2.4 TDR時域反射原理 13
2.4.1 物質之電化學特性 13
2.4.2 TDR量測系統 17
2.4.3 土壤含水量量測方法 19
2.4.4 水和膨潤土電學性質與溫度關係 22
2.4.5 化學物質與介電常數之關係 23
2.5 各國THM耦合相關實驗 24
2.5.1 瑞典模擬實驗 24
2.5.2 韓國模擬實驗 33
2.5.3 中國模擬實驗 36
2.5.4 國內模擬實驗 44
2.6 各國THC耦合相關實驗 49
2.6.1 西班牙相關實驗 49
2.6.2 日本模擬實驗 56
2.7 綜合評析 64
第三章 實驗材料與方法 66
3.1 實驗材料 66
3.2 實驗設備 67
3.2.1 實驗相關儀器 67
3.2.2 耦合實驗模具設計 71
3.2.3 TDR感測器改良及率定 75
3.3 緩衝材料電學性質 80
3.3.1 膨潤土含水量設計 80
3.3.2 建立視介電常數-含水量-溫度三向圖 81
3.4 小型熱-水-力學耦合實驗 82
第四章 模擬理論及參數設定 85
4.1 程式基礎 85
4.2 模擬理論 86
4.2.1 水力傳導分析 86
4.2.2 毛細壓力 87
4.2.3 質量守恆定律 88
4.2.4 有效應力理論 90
4.2.5 組構行為 91
4.2.6 水分回脹 92
4.2.7 延伸巴塞隆 納基本模型 92
4.3 模型及參數設定 94
4.3.1 元素網格及邊界條件 94
4.3.2 參數掃描分析 96
4.3.3 參數設定 100
第五章 研究結果 106
5.1 MX-80膨潤土視介電常數-含水量-溫度關係 106
5.1.1 視介電常數-含水量-溫度三向圖 107
5.2 T-H-M小型耦合實驗結果 111
5.2.1 初始乾密度1.4 g/cm3小型耦合實驗 112
5.2.2 初始乾密度1.5 g/cm3小型耦合實驗 118
5.2.3 初始乾密度1.6 g/cm3小型耦合實驗 125
5.2.4 初始乾密度1.5 g/cm3小型耦合實驗對照組 132
5.2.5 T-H-M小型耦合實驗小結 139
5.3 數值模擬分析結果 143
5.3.1 飽和度模擬結果 144
5.3.2 孔隙比模擬結果 147
5.3.3 乾密度模擬結果 150
5.3.4 位移模擬結果 153
5.3.5 體積含水量歷時模擬結果 155
5.4 小型耦合實驗與數值模擬比對 157
第六章 結論與建議 164
6.1 結論 164
6.2 建議 165
參考文獻 167
評審意見回覆表 171
參考文獻 The Empresa Nacional de Residuos Radiactivos, S.A.(ENRESA),網址:https://www.enresa.es/eng/
原子力発電環境整備機構(NUMO),網址:https://www.numo.or.jp/
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,國立中央大學土木工程學系,博士論文。
李宛諭,(2007),「土壤吸力對緩衝材料飽和行為之影響及模擬研究」,國立中央大學,碩士論文。
莊怡芳,(2008),「未飽和緩衝材料吸力與水力傳導度推求及再飽和行為」,國立中央大學,碩士論文。
行政院原子能委員會,(2010),「放射性物料管理法」,行政院原子能委員會放射性物料管理局,華總一義字第 09100248760 號。
李冠宏,(2016),「最終處置場近場環境對緩衝材料回脹壓力之影響」,國立中央大學,碩士論文。
蔡家恩,(2016),「用過核子燃料最終處置場緩衝材料之熱-水耦合實驗及模擬」,國立中央大學,碩士論文。
林柏吾,(2017),「深地層最終處置場緩衝材料小型熱-水耦合實驗中分層含水量量測改善」,國立中央大學,碩士論文。
林志鴻,(2019),「深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對」,國立中央大學,碩士論文。
唐鴻廷,(2023),「時域反射法於土壤含水量與導電度遲滯效應之影響因子探討」,國立中央大學,碩士論文。
鈴木英明, 藤﨑淳, & 藤田朝雄. (2009). 緩衝材の地球化学プロセスに着目した熱-水-化学連成挙動に関する工学規模の人工バリア試験と解析評価. 原子力バックエンド研究, 16(1), 43-56.
総合資源エネルギー調査会,(2015),「地層処分技術 WG 第 12 回 会合参考資料」,総合資源エネルギー調査会電力・ガス事業分 科会 原子力小委員会。
Börgesson, L., & Hernelind, J. (1999). Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. SKB TR 99- 41
Buchner, R., Hefter, G., May, P. M., & Sipos, P. (1999). Dielectric relaxation of dilute aqueous NaOH, NaAl (OH) 4, and NaB (OH) 4. The Journal of Physical Chemistry B, 103(50), 11186-11190.
Chen, L., Wang, J., Liu, Y., Collin, F., & Xie, J. (2012). Numerical thermo-hydro-mechanical modeling of compacted bentonite in China-mock-up test for deep geological disposal. Journal of Rock Mechanics and geotechnical engineering, 4(2), 183-192.
Chen, L., Liu, Y.-M., Wang, J., Cao, S.-F., Xie, J.-L., Ma, L.-K., Zhao, X.-G., Li, Y.-W., & Liu, J. (2014). Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test. Engineering Geology, 172, 57-68.
Cho, W., Lee, J., & Chun, K. (1999). The temperature effects on hydraulic conductivity of compacted bentonite. Applied clay science, 14(1-3), 47-58.
COMSOL. (2019). Reference Manual Multiphysics, Comsol User’s Guide V. 5.5.
COMSOL. (2018). Structural Mechanics Module, Comsol User’s Guide V. 5.4.
COMSOL. (2017). Geomechanics Module, Comsol User’s Guide V. 5.3.
COMSOL. (2017). Subsurface Flow Module, Comsol User’s Guide V. 5.3.
Elassy, K. S., Rahman, M. A., Yama, N. S., Shiroma, W. A., & Ohta, A. T. (2019). Complex permittivity of NaOH solutions used in liquid-metal circuits. IEEE Access, 7, 150150-150156.
Ellison, C., McKeown, M. S., Trabelsi, S., Marculescu, C., & Boldor, D. (2018). Dielectric characterization of bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum. Journal of Microwave Power and Electromagnetic Energy, 52(1), 3-15.
Fuel, S. N., & Company, W. M. (2011). Long‐term safety for the final repository for spent nuclear fuel at Forsmark. SKB Tech. Rep. TR‐11‐01.
Hausmann, J. N., Traynor, B., Myers, R. J., Driess, M., & Menezes, P. W. (2021). The pH of aqueous NaOH/KOH solutions: a critical and non-trivial parameter for electrocatalysis. ACS Energy Letters, 6(10), 3567-3571.
Huang, W.-H., & Chen, W.-C. (2004). Swelling Behavior of a Potential Buffer Material under Simulated Near Field Environment. Journal of Nuclear Science and Technology, 41(12), 1271-1279.
Jo, H. Y., Katsumi, T., Benson, C. H., & Edil, T. B. (2001). Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 557-567.
Johannesson, L.-E., Kristensson, O., Akesson, M., Eriksson, P., & Hedin, M. (2014). Tests and simulations of THM processes relevant for the buffer installation. SKB, Sweden, 14-22.
Karnland, O., Olsson, S., Nilsson, U., & Sellin, P. (2007). Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions. Physics and Chemistry of the Earth, Parts A/B/C, 32(1-7), 275-286.
Kim, G. Y., Kim, J.-S., Lee, C., & Kim, K. (2017). KURT (KAERI Underground Research Tunnel) and its Importance to the HLW Management Program in Korea. ISRM Young Scholars Symposium on Rock Mechanics,
Kim, M.-S., Jeon, J.-S., Kim, M.-J., Lee, J., & Lee, S.-R. (2019). A multi-objective optimization of initial conditions in a radioactive waste repository by numerical thermo-hydro-mechanical modeling. Computers and Geotechnics, 114, 103106.
Kristensson, O., & Åkesson, M. (2008). Mechanical modeling of MX-80 – Quick tools for BBM parameter analysis. Physics and Chemistry of the Earth, Parts A/B/C, 33, S508-S515.
Ledieu, J., De Ridder, P., De Clerck, P., & Dautrebande, S. (1986). A method of measuring soil moisture by time-domain reflectometry. Journal of Hydrology, 88(3-4), 319-328.
Lee, J. O., Cho, W. J., & Kwon, S. (2011). Suction and water uptake in unsaturated compacted bentonite. Annals of Nuclear Energy, 38(2-3), 520-526.
Lin, C.-P., Wang, K., Chung, C.-C., & Weng, Y.-W. (2017). New types of time domain reflectometry sensing waveguides for bridge scour monitoring. Smart Materials and Structures, 26(7), 075014.
Luan, D., Tang, J., Liu, F., Tang, Z., Li, F., Lin, H., & Stewart, B. (2015). Dielectric properties of bentonite water pastes used for stable loads in microwave thermal processing systems. Journal of Food Engineering, 161, 40-47.
Malicki, M., Plagge, R., & Roth, C. (1996). Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European Journal of Soil Science, 47(3), 357-366.
Melamed, A., & Pitkänen, P. (1993). Water-compacted Na-bentonite interaction in simulated nuclear fuel disposal conditions: the role of accessory minerals. MRS Online Proceedings Library (OPL), 333.
Narkuniene, A., Justinavicius, D., Poskas, P., Grigaliuniene, D., & Ragaisis, V. (2022). The Modeling of Laboratory Experiments on Granular MX-80 Bentonite with COMSOL Multiphysics. Minerals, 12(3).
Pedroso, D. M., & Farias, M. M. (2011). Extended Barcelona basic model for unsaturated soils under cyclic loadings. Computers and Geotechnics, 38(5), 731-740.
Pedroso, D. M., & Farias, M. M. (2011). Extended Barcelona Basic Model for unsaturated soils under cyclic loadings. Computers and Geotechnics, 38(5), 731-740.
Samper, J., Zheng, L., Montenegro, L., Fernández, A. M., & Rivas, P. (2008). Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test. Applied Geochemistry, 23(5), 1186-1201.
Seiphoori, A. (2015). Thermo-hydro-mechanical characterisation and modelling of Wyoming granular bentonite. Nagra Wettingen, Switzerland.
Topp, G. C., Davis, J., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16(3), 574-582.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
指導教授 鐘志忠(Chih-Chung Chung) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明