博碩士論文 111322059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.191.225.216
姓名 黃信傑(Shin-Jie Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用輕型落重撓度儀評估冷拌再生瀝青混凝土於現地強度之研究
(Evaluate the Field Strength of Cold Recycled Asphalt Mixture Using Lightweight Deflectometer ( LWD ) in Taiwan)
相關論文
★ Engineering and Environmental Analysis of Maintenance Interval in Taiwan Freeway -the Case of Guanxi Section★ 3D 鋪面調查車之驗證與國道應用分析
★ 營建剩餘土石方物流監控及管理系統之建置★ 透水性鋪面保水與溫差成效之評估 -以中壢市龍慈路為例
★ 以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究★ 傳統單點雷射與2D雷射應用於平坦度之比較研究
★ 鋪面劣化影像自動辨識應用於鋪面巡查精進研究★ 自動化鋪面破壞影像辨識系統導入鋪面破壞維護管理系統之研究
★ 以ETC大數據結合FWD建立台灣區高速公路鋪面結構評估準則之研究★ The Comparison Study of Various Surface Maintenance Alternatives in Taiwan Freeway
★ The Preliminary Study of conducting Pavement Maintenance Model for Taiwan Provincial Highways using Life-Cycle Cost Analysis★ 冷拌再生瀝青混凝土應用於管線挖掘回填層之可行性研究
★ 台灣現行修補材料運用於柔性鋪面表層裂縫與坑洞修補之耐久性初步探討★ 以車載藍光雷射建構國道鋪面抗滑值與二維紋理之關聯模型
★ 以不同光譜雷射應用於鋪面平坦度量測之綜合性評估★ 冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著國內路網愈加發達,以及每年的瀝青鋪面刨鋪維修,不只衍生瀝青刨除料(Reclaimed Asphalt Pavement , RAP)無處堆放的問題,每年耗費之養護經費亦是相當可觀,為了處理RAP開發其價值,行政院內政部營建署近年大力推動冷拌再生瀝青混凝土運用於鋪面底層之各項計畫;但如何控管及有效運用有限經費於鋪面養護仍是一大考驗,為了提高養護計畫的執行效率,掌握鋪面現況是必要課程,鋪面檢測儀器的重要性不言而喻。本研究使用輕型落重撓度儀(Lightweight Deflectometer, LWD)作為鋪面強度檢測設備,使用4種壓力配置(140 kPa、220 kPa、560 kPa及905 kPa)進行現地冷拌再生瀝青混凝土底層撓度試驗,並觀測到現地冷拌再生瀝青混凝土之強度發展,本研究記錄不同厚度的現地冷拌再生瀝青混凝土鋪設完成後的強度發展與力學行為,發現LWD運用於現地冷拌再生混凝土之強度測量是可行的。同時,依據ASTM E3331規範進行實驗室內試體製作與撓度試驗,嘗試建立冷拌再生瀝青混凝土材料與含水量之關聯性。完成試驗並取得實驗數據後,本研究將進行Abaqus有限元素模型的建立並模擬現地與實驗室試驗中底層材料的受力表現,探討其不同條件下測得之鋪面底層強度是否有所差異,在完成試驗與模型模擬後,發現因軟弱層之影響,在不同壓力配置下會有高估或低估鋪面實際強度之情形,且提高壓力可以減少軟弱層對撓度評估之影響,因此,建議未來進行LWD現地撓度試驗時應使用905 kPa作為落錘壓力,模擬底層材料實際強度,且依據本研究得出之結果,此壓力下影響深度約為40 cm,亦即此壓力測到的結果可代表測試表面向下40 cm之整體強度,根據本研究結果顯示使用LWD可以觀測到冷拌再生瀝青混凝土在不同時間下的E值及其發展趨勢,本研究量測結果相對穩定且變異性較小,可以運用於未來進行鋪面加鋪及厚度設計之參數使用,本研究之結果值得於未來進行進一步之研究與探討。
摘要(英) Effectively using and managing the limited resources for paving maintenance continues to be a major concern. The Lightweight Deflectometer (LWD) is the pavement strength testing equipment used in this study. Four pressure configurations are used in in-situ deflection tests on CRM pavement sub-layers. The study analyzes the strength evolution and mechanical behavior of finished pavement with various thicknesses while also observing the strength growth of CRM. The results show that it is possible to measure the strength of in-situ recycled asphalt concrete using LWD. In order to determine the link between the components used in CRM and moisture content, laboratory specimens are made and placed through deflection testing according with ASTM E3331 standards. This study builds an Abaqus finite element model to simulate the stress performance of sub-layer materials in both in-situ and laboratory tests once the tests conclude and the experimental data has been collected. The aim of this study is to determine whether different environmental factors affect the measured pavement sub-layer strength. The study shows that under various pressure combinations, the influence of the weak layer may cause an overestimation or underestimation of the real pavement strength. The effect of the weak layer on deflection assessment can be lessened by increasing pressure. In order to accurately represent the strength of sub-layer materials in future in-situ LWD deflection testing, it is advised to utilize 905 kPa as the hammer pressure. The results produced under this pressure can represent the total strength down to a depth of 40 cm below the test surface, based on the results of the study, which show the depth affected at this pressure is around 40 cm.
關鍵字(中) ★ LWD
★ 現地強度試驗
★ 冷拌再生瀝青混凝土
★ 有限元素法
關鍵字(英) ★ LWD
★ Field Strength Testing
★ CMA
★ Finite Element Method
論文目次 摘 要 I
ABSTRACT III
致 謝 V
目 錄 VII
圖目錄 XI
表目錄 XV
第一章、緒論 1
1-1  研究背景與動機 1
1-2  研究目的 2
1-3  研究範圍 3
1-4  研究流程 4
第二章、文獻回顧 7
2-1  冷拌再生技術應用於鋪面底層 7
2-2  鋪面撓度檢測技術 11
2-2-1 LWD應用於鋪面檢測 11
2-2-2 FWD應用於鋪面檢測 18
2-3  含水量對鋪面強度之影響 20
2-3-1 鋪面水分監測 20
2-3-2 水分與彈性係數(E值) 22
2-4  回彈模數(RESILIENT MODULUS)與彈性係數(ELASTIC MODULUS) 25
2-5  有限元素分析法 26
2-6  資料統計分析 28
2-7  文獻回顧小結 30
第三章、研究方法 31
3-1  現地強度檢測與數據收集 31
3-1-1 現地鋪設 32
3-1-2 鋪面含水量及溫度監測設備 35
3-1-3 以LWD進行現地強度試驗 37
3-1-4 工地密度試驗 39
3-2  實驗室模擬試驗 40
3-2-1 試體製作 42
3-2-2 無圍壓縮試驗 43
3-3  有限元素模型建立 44
第四章、試驗成果分析 47
4-1  現地數據收集結果 48
4-1-1 材料特性 49
4-1-2 發泡再生瀝青混凝土 50
4-1-3 乳化再生瀝青混凝土 53
4-1-4 土壤(S點位) 56
4-1-5 現地環境監測結果 58
4-2  實驗室試驗結果 62
4-2-1 發泡再生瀝青混凝土 62
4-2-2 乳化再生瀝青混凝土 63
4-2-3 土壤材料 64
4-2-4 建立關係式 65
4-3  小結 67
第五章、模型建立成果 69
5-1  模擬現地模型 70
5-1-1 現地20 cm底層模型 73
5-1-2 現地40 cm底層模型 78
5-1-3 現地土壤底層模型 83
5-2  模擬實驗室試體模型 87
5-3  小結 92
第六章、結論與建議 93
6-1  結論 93
6-2  建議 95
參考文獻 97
參考文獻 [1] 徐聖博,(2015),「發泡瀝青技術添加瀝青刨除料應用於道路底層可行性之研究」,國立中央大學土木工程學系碩士論文,桃園。
[2] Zulakmal, S., Nfisah, A. A., Mohd, M., & Mat, H. (2009). “Influence of active filler, curing time, and moisture content on the strength properties of emulsion and foamed bitumen stabilized mix.” Advanced testing and characterization of bitumen materials, pp. 1143-1150.
[3] 陳思儒,(2020),「使用發泡瀝青之冷拌再生瀝青混凝土強度發展初步探討」,國立中央大學土木工程學系碩士論文,桃園。
[4] 行政院公共工程委員會,2015,「施工綱要規範第02726章 級配粒料底層」。
[5] Tataranni, P., Sangiorgi, C., Simone, A., Vignali, V., Lantieri, C., & Dondi, G. (2018). “A laboratory and field study on 100% Recycled Cement Bound Mixture for base layers.” International Journal of Pavement Research and Technology, Vol. 11 No. 5, pp. 427-434.
[6] Kumar, V., Deol, S., & Kumar, R. (2018). “Structural evaluation of flexible pavement using non-destructive techniques in low volume road.” In Advancement in the Design and Performance of Sustainable Asphalt Pavements: Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures 1 pp. 168-184.
[7] Akmaz, E., Ullah, S., Tanyu, B. F., & Guler, E. F. (2020). “Construction quality control of unbound base course using light weight deflectometer where reclaimed asphalt pavement aggregate is used as an example.” Transportation Research Record, Vol. 2674 No. 10, pp. 989-1002.
[8] Mooney, M. A., & Miller, P. K. (2009). “Analysis of lightweight deflectometer test based on in situ stress and strain response.” Journal of geotechnical and geoenvironmental engineering, Vol. 135 No. 2, pp. 199-208.
[9] Sudarsono, I., Aisyah, L., & Prakoso, R. N. P. (2020). “Correlation of modulus elasticity between Light Weight Deflectometer (LWD) and Dynamic Cone Penetrometer (DCP) for subgrade of pavement.” In Journal of Physics: Conference Series, Ser. 1517, No. 1, pp. 12-30.
[10] Camargo, F., Larsen, B., Chadbourn, B., Roberson, R., & Siekmeier, J. (2006). “Intelligent compaction: a Minnesota case history.” In 54th Annual University of Minnesota Geotechnical Conference, Vol. 17.
[11] Du Tertre, A. (2010). “Nondestructive evaluation of asphalt pavement joints using LWD and MASW tests.” ,Master′s thesis, University of Waterloo.
[12] Narnoli, V. K., & Suman, S. K. (2020). “Development of structural condition assessment model for flexible pavement based on LWD and GPR measurements.” International Journal of Pavement Research and Technology, Vol. 14, pp. 570-578.
[13] Siekmeier, J., Pinta, C., Merth, S., Jensen, J., Davich, P., Camargo, F. F., & Beyer, M. (2009). “Using the dynamic cone penetrometer and light weight deflectometer for construction quality assurance.” No. MN/RC 2009-12. Minnesota. Dept. of Transportation. Office of Materials and Road Research.
[14] Prayuda, H., Djaha, S. I. K., Rahmawati, A., Monika, F., & Adly, E. (2021). “Young’S Modulus and Deflection Assessment on Pavement Using a Lightweight Deflectometer.” GEOMATE Journal, Vol. 20 No. 77, pp. 10-17.
[15] Sawangsuriya, A. (2022). “Correlation between LWD and FWD deflections for asphalt pavement.” Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Vol. 2, pp. 320-327.
[16] Vennapusa, P. K. R., White, D. J., Siekmeier, J., & Embacher, R. A. (2012). “In situ mechanistic characterisations of granular pavement foundation layers.” International Journal of Pavement Engineering, Vol. 13 No. 1, pp. 52-67.
[17] Vaitkus, A., Žalimienė, L., Židanavičiūtė, J., & Žilionienė, D. (2019). “Influence of temperature and moisture content on pavement bearing capacity with improved subgrade.” Materials, Vol. 12 No. 23, 3826.
[18] Rabbi, M. F., & Mishra, D. (2021). “Using FWD deflection basin parameters for network-level assessment of flexible pavements.” International Journal of Pavement Engineering, Vol. 22 No.2, pp. 147-161.
[19] Tarefder, R. A., & Ahmed, M. U. (2014). “Modeling of the FWD deflection basin to evaluate airport pavements.” International Journal of Geomechanics, Vol. 14 No. 2, pp. 205-213.
[20] Fernandes, F. M., Fernandes, A., & Pais, J. (2017). “Assessment of the density and moisture content of asphalt mixtures of road pavements.” Construction and Building Materials, Vol. 154, pp. 1216-1225.
[21] Diefenderfer, B. K. (2002). “Moisture content determination and temperature profile modeling of flexible pavement structures” (Doctoral dissertation, Virginia Polytechnic Institute and State University).
[22] Kavussi, A., Qorbaninik, M., & Hassani, A. (2019). “The influence of moisture content and compaction level on LWD modulus of unbound granular base layers.” Transportation Geotechnics, Vlo. 20, 100252.
[23] Khoury, N., Brooks, R., Boeni, S. Y., & Yada, D. (2013). “Variation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contents.” Journal of Materials in Civil Engineering, Vol. 25 No. 2, pp. 160-166.
[24] Guthrie, W. S., Roper, M. B., and Eggett, D. L. (2008). “Evaluation of laboratory durability tests for stabilized aggregate base materials.” (CD-ROM), Annual meeting, Transportation Research Board, Washington, DC.
[25] ASTM. (2022). “Standard Test Method for Measuring Target Modulus Using Light Weight Deflectometer (LWD) on Compacted Proctor Mold Samples” No. 3331, American Society for Testing and Materials.
[26] Elliott, R. P., & Thornton, S. I. (1988). “Simplification of subgrade resilient modulus testing.” Transportation Research Record, 1192, pp. 1-7.
[27] ASTM. (2010). “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil” No. 2166, American Society for Testing and Materials.
[28]馮天正,(2000),「三維有限元素應用於柔性鋪面之非線性分析」,國立中央大學土木工程學系碩士論文,桃園。
[29]楊曜銘,(2022),「以路基土壤強度建立滾壓驗證較適配置之探討-桃園地區為例」,國立中央大學土木工程學系碩士論文,桃園。
[30] Zhao, Z., Liang, S., Liu, J., Sun, J., & Yu, T. (2022). “Influence of base course types on axial load diffusion performance for asphalt pavement based on measured data. Case Studies in Construction Materials”, 17, e01644.
[31] ASTM. (2020). “Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD)” No. 2583, American Society for Testing and Materials.
[32] 經濟部標準檢驗局,2005,「CNS 14733 以砂錐法測定土壤工地密度試驗法」。
[33] AASHTO (2019). “Standard Method of Test for Moisture–Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305-mm (12-in.) Drop” No. 99, American Association of State Highway and Transportation Officials.
[34] ASTM. (2016). “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil” No. 2166, American Society for Testing and Materials.
[35] 行政院公共工程委員會,2021,「施工綱要規範第02727章 冷拌再生瀝青混凝土」。
指導教授 陳世晃(Shih-Huang Chen) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明