博碩士論文 110223032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:18.116.88.118
姓名 蔡伊玳(Yi-Tai Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 噻唑併噻唑及聯噻吩衍生物之有機光電材料之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本論文主要分為有機薄膜電晶體 (OTFT) 與鈣鈦礦太陽能電池 (PSC) 材料之開發。
在OTFT的部分,主要以噻唑併噻唑 (thiazolo[5,4-d]thiazole, TTz) 為核心,先接上帶硫醚鏈噻吩 (thioalkylated bithiophene, SBT) 作為 π-spacer,再外接拉電子單元二氰乙烯基 (dicyanovinyl, DCV),製備出 DCV-SBT-TTz (1)化合物作為有機薄膜電晶體 (OTFT) 材料。
另外,本研究亦製備四種新型高分子材料以及兩種小分子材料作為錫鈣鈦礦太陽能電池中的電洞傳輸層 (HTL),合成出3-SBT-BT2D (4)、5-SBT-BT2D (5)、3-BT-BT2D (6)、5-BT-BT2D (7),本研究將 SBT-TTz 為核心以D-A-D 設計,兩側外掛推電子基團 (Triphenylamine, TPA),開發出小分子DSBT-TTz-2D (2),同時合成出 DSBT-TTz-4D (3) 進行比較,DSBT-TTz-2D (2)作為電洞傳輸層應用於 Pb-based 的鈣鈦礦太陽能電池目前初步測試具有 17.47% 之光電轉換效率。
而上述之新材料的電化學及光學性能 ( HOMO / LUMO 與 Eg ) 已藉由DPV及UV-Vis測定,材料之熱穩定性已透過TGA與DSC檢測,這些新開發的有機分子材料正在進行其相關元件之優化。
摘要(英) A series of new organic optoelectronic materials and hole transporting materials were synthesized and characterized for use in organic thin film transistors (OTFTs) and Perovskite solar cells.
In this study, DCV-SBT-TTz (1) was synthesized as the material for OTFTs, utilizing thiazolo[5,4-d]thiazole (TTz) as a central core, two thioalkylated bithiophene (SBT) units as the π-spacer, and dicyanovinyl (DCV) as the electron-withdrawing group.
The two small HTL were designed based on the D-A-D concept, where the SBT-TTz core was end-capped with a triphenylamine (TPA) unit DSBT-TTz-2D (2), and DSBT-TTz-4D (3) for lead perovskite solar cells (Pb-PSCs).
Furthermore, four new polymeric materials were prepared as hole-transporting layers (HTLs) for tin perovskite solar cells (TPSCs). These materials include 3-SBT-BT2D (4), 5-SBT-BT2D (5), 3-BT-BT2D (6), 5-BT-BT2D (7).
The chemical structures were determined through 1H NMR, 13C NMR, and mass spectrometry. Thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The optical and electrochemical properties of these newly developed compounds were characterized using UV-vis spectroscopy and differential pulse voltammetry (DPV).
Recently, DSBT-TTz-2D (2) is being used as a hole transport layer in lead-based perovskite solar cells, demonstrating a photovoltaic conversion efficiency of 17.47%.
Currently, efforts are underway to optimize optoelectronic devices based on these new hole transporting materials and organic polymers.
關鍵字(中) ★ 噻唑併噻唑
★ 聯噻吩
★ 有機光電材料之開發
關鍵字(英)
論文目次 摘 要 vi
Abstract vii
謝 誌 ix
目 錄 x
List of Figures xvi
List of Schemes xviii
List of Tables xxi
附 錄 xxii
第1章 緒論 1
1-1 前言 2
1-2 有機薄膜電晶體之概論 3
1-3 有機薄膜電晶體之元件結構 7
1-4 有機薄膜電晶體之運作原理 10
1-5 有機薄膜電晶體的應用 11
1-6 有機薄膜電晶體導電性質之基本公式及特性 13
1-6-1 載子遷移率 (Mobility, μ) 13
1-6-2 開關電流比 (on / off current ratio, Ion / Ioff) 14
1-6-3 起始電壓 (Threshold Voltage, VT) 15
1-7有機半導體分子載子遷移率影響因素 15
1-7-1 分子設計 15
1-7-2 有機半導體分子結晶度 17
1-7-3 有機半導體分子排列模式 18
1-8 有機薄膜電晶體材料 19
1-8-1 P-type 有機薄膜電晶體材料 19
1-8-2 N-type 有機薄膜電晶體材料 24
1-8-3 Ambipolar 有機薄膜電晶體材料 27
1-9 太陽能電池之概論 28
1-9-1 矽晶太陽能電池 29
1-9-2 無機化合物半導體太陽能電池 30
1-9-3 有機太陽能電池 31
1-10 鈣鈦礦太陽能電池簡介 32
1-10-1 基本構造 34
1-10-2 工作原理 36
1-10-3 電洞傳輸層 37
1-10-4 鉛鈣鈦礦太陽能電池之電洞傳輸層材料 39
1-10-5 錫鈣鈦礦太陽能電池之電洞傳輸層材料 41
1-11鈣鈦礦太陽能電池參數介紹 43
1-11-1 J-V 曲線 44
1-11-2 短路電流 (Short circuit current, JSC) 45
1-11-3 開環電壓 (Open circuit voltage, VOC) 45
1-11-4 外部量子效率 (Eternal quantum efficiency, EQE) 46
1-11-5 填充因子 (Fill factor, FF) 46
1-11-6 能量轉換效率 (Power conversion efficiency, η, PCE) 46
1-12研究動機與目的 47
1-12-1 有機薄膜電晶體 47
1-12-2電洞傳輸層材料 49
第2章 實驗部份 53
2-1 化合物名稱對照 54
2-2 實驗藥品 56
2-2-1實驗所用之化學藥品 56
2-2-2實驗所用之溶劑除水方式 58
2-3 實驗儀器 58
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 58
2-3-2 紫外光 / 可見光吸收光譜 (Ultraviolet Visible Near-infare Spectrophotometer, UV/VIS/NIR Spectrophotometer) 59
2-3-3 熱重分析儀 (Thermal Gravimetric Analyer, TGA); TGA Instrument Q50 Series 59
2-3-4 電化學裝置 (Electrochemiacal Analyzer / Work- station);HCH Instrumentent Model 621C 59
2-3-5 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 60
2-3-6凝膠滲透色譜裝置(Gel Permeation Chromatography, GPC);JASCO PU-2080, RI-2031 60
2-4 合成步驟 61
2-4-1 3,3′-Dibromo-2,2′-bithiophene (Dibr-BT ; 8) 之合成 61
2-4-2 3,3′-bis(tetradecylthio)-2,2′-bithiophene (SBT-14 ; 9) 之合成 62
2-4-3 3,3′-bis(tetradecylthio)-[2,2′-bithiophene]-5-carbaldehyde (SBT-monoCHO ; 10) 之合成 63
2-4-4 2,5-bis(3,3′-bis(tetradecylthio)-[2,2′-bithiophen]-5-yl)thiazolo[5,4-d]thiazole (DSBT-TTz ; 11 ) 之合成 64
2-4-5 5′,5′-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(3,3′-bis(tetradecylthio)-[2,2′-bithiophene]-5-carbaldehyde) (DiCHO-DSBT ; 12)之合成 65
2-4-6 DCV-SBT-TTz之合成 (DCV-SBT-TTz ; 1) 66
2-4-7 2,5-bis(5′-bromo-3,3′-bis(tetradecylthio)-[2,2′-bithiophen]-5-yl)thiazolo[5,4-d]thiazole (DiBr-DSBT-TTz ; 13)之合成 67
2-4-8 4-Methoxy-N-(4-methoxyphenyl)-N-(4-(tributyl-stannyl)phenyl)aniline (TPA-Tin ; 15) 之合成 68
2-4-9 SBT-TTz-2D之合成 (SBT-TTz-2D ; 2) 70
2-4-10 1,2-bis(4′-(bis(4-methoxyphenyl)amino)-[1,1′-biphenyl]-4-yl)ethane-1,2-dione (Diketone-TPA ; 16)之合成 70
2-4-11 SBT-TTz-4D之合成 (SBT-TTz-4D ; 3) 72
2-4-12 2,2′-bithiophene (BT ; 17 ) 之合成 73
2-4-13 3,3′,5,5′-tetrabromo-2,2′-bithiophene (4BrBT ; 18 ) 之合成 74
2-4-14 4-Methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline (TPA-BA ; 19 ) 之合成 75
2-4-15 4,4′-(3,3′-dibromo-[2,2′-bithiophene]-5,5′-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (DiBr-5,5’-diTPABT; 20) 之合成 75
2-4-16 (3,3′-bis(tetradecylthio)-[2,2′-bithiophene]-5,5′-diyl)bis(trimethylstannane) (DiTin-SBT-14 ; 21) 之合成 77
2-4-17 3,3′-ditetradecyl-2,2′-bithiophene (BT-14 ; 22) 之合成 78
2-4-18 (3,3′-bis(tetradecylthio)-[2,2′-bithiophene]-5,5′-diyl)bis(trimethylstannane) (Ditin-BT-14 ; 23) 之合成 79
2-4-19 4,4′-([2,2′-bithiophene]-3,3′-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (3,3’-diTPABT ; 24) 之合成 80
2-4-20 Ditin-3,3’-diTPABT之合成(Ditin-3,3’-diTPABT ; 25) 81
2-4-21 5,5′-dibromo-3,3′-bis(tetradecylthio)-2,2′-bithiophene (DiBr-SBT-14 ; 26) 之合成 82
2-4-22 5,5′-dibromo-3,3′-ditetradecyl-2,2′-bithiophene (DiBr-BT-14 ; 27) 之合成 83
2-4-23 3SBT-BT2D之合成 (3SBT-BT2D ; 4) 84
2-4-24 5SBT-BT2D之合成 (5SBT-BT2D ; 5) 85
2-4-25 3BT-BT2D之合成 (3BT-BT2D ; 6) 86
2-4-26 5BT-BT2D之合成 (5BT-BT2D ; 7) 87
第3章 結果與討論 88
3-1 有機分子材料之光學性質探討 89
3-1-1 有機薄膜電晶體、電洞傳輸層(OTFT、PSCs) 89
3-1-2電洞傳輸層 (HTLs) 91
3-2 有機分子材料之電學性質探討 93
3-2-1 有機薄膜電晶體、電洞傳輸層(OTFT、PSCs) 94
3-2-2 電洞傳輸層 (HTLs) 96
3-3 有機分子材料之熱穩定性分析 98
3-3-1 有機薄膜電晶體、電洞傳輸層(OTFT、PSCs) 99
3-3-2 電洞傳輸層 (HTLs) 100
第4章 結論 102
參考文獻 104
附 錄 112
參考文獻 江文彥, 科學發展. 2002, 359, 68.
Chiang, C. K.; Gau, S. C.; Druy, M. A.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. J. Am. Chem. Soc. 1978, 100, 1013-1015.
Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society, Chemical Communications 1977, 16, 578-580.
Dawon, K. U.S. Patent 1963, No. 3,102,230.
Horowitz, G.; Fichou, D.; Peng, X. Z.; Xu, Z. G.; Garnier, F. Solid State Commun. 1989, 72, 381-384.
陳勝禹,有機薄膜電晶體材料雙噻吩蒽之開發.國立中央大學化學研究所碩士論文, 2006.
Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv. Mater. 2005, 17, 1705- 1725.
Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Science 1999, 283, 822-824.
Dickey, K. C.; Smith, T. J.; Stevenson, K. J.; Subramanian, S.; Anthony, J. E.; Loo, Y. L. Chem. Mater. 2007, 19, 5210-5215.
Murphy, A. R.; Frechet, J. M. Chem. Rev. 2007, 107, 1066-1096.
Yoon, M.-H.; Yan, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10388-10395.
倪偵翔, 可溶性有機薄膜電晶體材料之開發. 國立中央大學化學研究所碩士論文, 2006.
Anthony, J. E. Chem. Rev. 2006, 106, 5028-5048.
Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. 2013, 25, 6158.
Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489-1502.
Wen, Y.; Liu, Y. Adv. Mater. 2010, 22, 1331-1345.
Gao, X.; Zhao, Z. Science China Chemistry, 2015. 58, 947-968.
Dimitrakopoulos, C. D.; Malenfant, P. R. Adv. Mater. 2002, 14, 99-117.
Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Nature, 2011, 480, 504-508.
Takimiya, K.; Ebata, H.; Sakamoto, K.; Izawa, T.; Otsubo, T.; Kunugi, Y. J. Am. Chem. Soc. 2006, 128, 12604-12605.
Iino, H.; Usui, T., Hanna, J. I. Nature communications, 2015, 6, 1-8.
Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. 2007, 129, 2224.
Kang, M. J.; Doi, I.; Mori, H.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H. Adv. Mater. 2011, 23, 1222-1225.
Yuan, Y.; Huang, J.; Giri, G.; Zoombelt, A. P.; Bao, Z.; Ayzner, A. L.; Mannsfeld, S. C. B.; Nordlund, D.; Toney, M. F.; Chen, J. Nat. Commun 2014, 5, 3005.
Yang, Y. S.; Yasuda, T.; Kakizoe, H.; Mieno, H.; Kino, H.; Tateyama, Y.; Adachi, C. Chemical Communications 2013, 49, 6483-6485.
Okamoto, T.; Mitsui, C.; Yamagishi, M.; Nakahara, K.; Soeda, J.; Hirose, Y.; Miwa, K.; Sato, H.; Yamano, A.; Matsushita, T.; Uemura, T.; Takeya, J. Adv. Mater. 2013, 25, 6392-6397.
Panzer, M. J.; Frisbie, C. D. J. Am. Chem. Soc. 2007, 129, 6599-6607.
Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; McNeill, C. R.; Sirringhaus, H.; Kim, J.-S.; Heeney, M. J. Am. Chem. Soc. 2015, 137, 6866-6879.
McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; Mcgehee, M. D.; Toney, M. F. Nature materials, 2006, 5, 328-333.
Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B. C.; Yan, F.; Kline, R. J.; Anthopoulos, T. D.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154-15157.
Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477-9483.
Liu, B.; Li, J.; Zeng, W.; Yang, W.; Yan, H.; Li, D.; Zhou, Y.; Gao, X.; Zhang, Q. Chem. Mater. 2021, 33, 580−588
Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827-838.
Letizia, J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 13476-13477.
Yun, S. W.; Kim, J. H.; Shin, S.; Yang, H.; An, B. K.; Yang, L.; Park, S. Y. Adv. Mater. 2012, 24, 911-915.
Ando, S.; Murakami, R.; Nishida, J. I.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 14996-14997.
Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T. Chem. Mater. 2008, 20, 7486-7491.
Wu, Q.; Li, R.; Hong, W.; Li, H.; Gao, X.; Zhu, D. Chem. Mater. 2011, 23, 3138-3140.
Wu, H.; Wang, Y.; Qiao, X.; Wang, D.; Yang, X.; Li, H. Chem. Mater. 2018, 30, 6992-6997.
Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656-13657.
Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679-686.
Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. J. Am. Chem. Soc.2012, 134, 16532-16535.
Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; Van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678-682.
Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Chem. Mater. 2016, 28, 2209.
Chapin, D. M.; Fuller, C. C.; Person, G. L. J. Appl. Phys. 1954, 25, 676-677.
Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44-48.
from: https://www.nrel.gov/pv/cell-efficiency.html
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1-7.
Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Adv. Mater. 2017, 29(46), 1703852.
Tian, X.; Stranks, S. D.; You, F. Sci. Adv. 2020, 6(31), eabb0055.
https://www.pv-magazine.com/2021/04/06/unist-epfl-claim-25-6-efficiency-world-record-for-perovskite-solar-cell/
Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photonics Energy, 2016, 6, 022001.
Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Nature Energy, 2016, 1, 1-7.
陳彥均, 不同膜厚之電子傳輸及電洞注入層對有機發光二極體之性質影響分析. 聖約翰科技大學自動化及機電整合研究所碩士學位論文, 2011
Chen, Y, C.; Huang, S, K.; Li, S, S.; Tsai, Y, Y.; Chen, C, P.; Chen, C, W.; Chang, Y, J.; ChemSusChem, 2018, 11, 3225–3233.
Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.; Zhang, Z.; Xu, H.; Qiu, Y.; Xie, Z.; Shan, T.; Chen, Z.; Zhong, H.; Chen, C. Chem. Mater., 2021, 33, 285.
Cho, I.; Jeon, N.; Kwon, O.; Kim, D.; Jung, E.; Noh, J.; Seo, J.; Seok, S.; Park, S. Chem. Sci., 2017, 8, 734.
Wang, Y, K.; Ma, H.; Chen, Q.; Sun, Q.; Liu, Z.; Sun, Z.; Jia, X.; Zhu, Y.; Zhang, S.; Zhang, J.; Yuan, N.; Ding, J.; Zhou, Y.; Song, Bo.; Li, Y.; ACS Appl. Mater. Interfaces. 2021, 13, 7705–7713.
F. Zhang Z. Yao, Y. Guo, Y. Li, J. Bergstrand, C. J. Brett, B. Cai, A.
Hajian, Y. Guo, X. Yang, J. M. Gardner, J. Widengren, S. V. Roth, L. Kloo, L. Sun. J. Am. Chem. Soc. 2019, 141, 19700.
Sun, X.; Li, Z.; Yu, X.; Wu, X.; Zhong, C.; Liu, D.; Lei, D.; Jen, A. K. Y.; Li, Z.; Zhu, Z. Angew. Chem. Int. Ed. 2021, 60, 7227–7233.
Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc. 2018, 140, 388.
Kuan, C. H.; Balasaravanan, R.; Hsu, S. M.; Ni, J. S.; Tsai,Y. T.; Zhang,
Z.X.; Chen, M. C.; Diau, W. G. Adv. Mater. 2023, 2300681.
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021–1033.
Boudreault, P.-L.T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456–469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374–380.
Vegiraju, S.; Chang, B. C.; Priyanka, P.; Huang, D. Y.; Wu, K. Y.; Li, L. H.; Chang, W. C.; Lai, Y. Y.; Hong, S. H.; Yu, B. C.; Wang, C. L.; Chang, W. J.; Liu, C.-L.; Chen, M. C.; Facchetti, A. Adv. Mater. 2017, 29, 1702414.
A. Velusamy, S. N. Afraj, S. Yau, C.-L. Liu, Y. Ezhumalai, P. Kumaresan, M.-C. Chen, J. Chin. Chem. Soc. 2022, 69, 1253-1275.
T. Krishnamoorthy, F. Kunwu, P.P. Boix, H. Li, T.M. Koh, W.L. Leong, S. Powar, A. Grimsdale, M. Gra¨ tzel, N. Mathews, S.G. Mhaisalkar, J. Mater. Chem. A 2014, 2, 6305-6309.
V. Joseph, A. A. Sutanto, C. Igci, O. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I. E. Queloz, H. Kanda, P.-Y. Huang, J.-S. Ni, S. Kinge, M.-C. Chen, M. K. Nazeeruddin, Small 2021, 17, 2100783.
A. A. Sutanto, V. Joseph, C. Igci, O. A. Syzgantseva, M. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I. E. Queloz, P.-Y. Huang, J.-S. Ni, S. Kinge, A. M. Asiri, M.-C. Chen, M. K. Nazeeruddin, Chem. Mater. 2021, 33, 3286-3296
X. Liu, F. Kong, R. Ghadari, S. Jin, T. Yu, W. Chen, G. Liu, Z. Tan, J. Chen, S. Dai, Chem. Commun. 2017, 53, 9558–9561.
N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Gra¨ tzel, S.I. Seok, J. Am. Chem. Soc. 2013, 135, 19087–19090.
G. Xu, R. Xue, M. Zhang, Y. Li, Y. Li, Acta Phys. -Chim. Sin. 2021, 37, 2008050
S. C. Rasmussen, R. L. Schwiderski, M. E. Mulholland, Chem. Commun. 2011, 47, 11394-11410
Vegiraju, S.; Ke,W.; Priyanka, P.; Ni, J.; Wu, Y.; Spanopoulos, I.; Yau, S.; Marks, T. J.; Chen, M. Kanatzidis, M. G. Adv. Funct. Mater. 2019, 1905393.
M. Bauer, H. Zhu, T. Baumeler, Y. Liu, F. T. Eickemeyer, C. Lorenz, E. Mena-Osteritz, D. Hertel, S. Olthof, S. M. Zakeeruddin, K. Meerholz, M. Grätzel, P. Bäuerle, Adv. Energy Mater. 2021, 11, 2003953
X. Ji, K. Feng, S. Ma, J. Wang, Q. Liao, Z. Wang, B. Li, J. Huang, H. Sun, K. Wang, X. Guo, ACS Nano 2022, 16, 11902−11911
Joseph, V. Xia, J. Sutanto, A. A. Jankauskas, V. Momblona, C. Ding, B. Rakstys, K. Balasaravanan, R. Pan, C. H. Ni, J. S. Yau, S. L. Sohail, M. Chen,M. C. Dyson, P. J. Mohammad, K. ACS Applied Materials & Interfaces, 2022. 14(19), 22053-22060.
指導教授 陳銘洲 姚學麟(Ming-Chou Chen Shueh-Lin Yau) 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明