參考文獻 |
[1] Brian J. Anderson et al. “The Global Magnetic Field of Mercury from MES- SENGER Orbital Observations”. In: Science 333.6051 (Sept. 2011), p. 1859. DOI: 10.1126/science.1211001.
[2] Brian J. Anderson et al. “Low-degree structure in Mercury’s planetary magnetic field”. In: Journal of Geophysical Research (Planets) 117, E00L12 (Dec. 2012), E00L12. DOI: 10.1029/2012JE004159.
[3] W. Baumjohann et al. “The magnetosphere of Mercury and its solar wind environment: Open issues and scientific questions”. In: Advances in Space Research 38.4 (Jan. 2006), pp. 604–609. DOI: 10.1016/j.asr.2005.05. 117.
[4] Chris J Bennett et al. “Investigating potential sources of Mercury’s exo- spheric Calcium: Photon-stimulated desorption of Calcium Sulfide”. In: Journal of Geophysical Research: Planets 121.2 (2016), pp. 137–146.
[5] Thomas A. Bida, Rosemary M. Killen, and Thomas H. Morgan. “Discovery of calcium in Mercury’s atmosphere”. In: 404.6774 (Mar. 2000), pp. 159– 161. DOI: 10.1038/35004521.
[6] A. L. Broadfoot, D. E. Shemansky, and S. Kumar. “Mariner 10: Mer- cury atmosphere”. In: 3.10 (Oct. 1976), pp. 577–580. DOI: 10 . 1029 / GL003i010p00577.
[7] A. L. Broadfoot et al. “Mercury’s Atmosphere from Mariner 10: Prelimi- nary Results”. In: Science 185.4146 (July 1974), pp. 166–169. DOI: 10.1126/ science.185.4146.166.
[8] Matthew H Burger et al. “Modeling MESSENGER observations of calcium in Mercury’s exosphere”. In: Journal of Geophysical Research: Planets 117.E12 (2012).
[9] Matthew H. Burger et al. “Seasonal variations in Mercurys dayside cal- cium exosphere”. In: 238 (Aug. 2014), pp. 51–58. DOI: 10 . 1016 / j . icarus.2014.04.049.
[10] TA Cassidy et al. “Detection of large exospheric enhancements at Mer- cury due to meteoroid impacts”. In: The Planetary Science Journal 2.5 (2021), p. 175.
[11] Timothy A. Cassidy et al. “Mercury’s seasonal sodium exosphere: MES- SENGER orbital observations”. In: 248 (Mar. 2015), pp. 547–559. DOI: 10. 1016/j.icarus.2014.10.037.
[12] Apostolos A. Christou, Rosemary M. Killen, and Matthew H. Burger. “The meteoroid stream of comet Encke at Mercury: Implications for MErcury Surface, Space ENvironment, GEochemistry, and Ranging observations of the exosphere”. In: 42.18 (Sept. 2015), pp. 7311–7318. DOI: 10.1002/ 2015GL065361.
[13] Mark J. Cintala. “Impact-induced thermal effects in the lunar and mer- curian regoliths”. In: 97.E1 (Jan. 1992), pp. 947–973. DOI: 10 . 1029 / 91JE02207.
[14] D. C. Delcourt. “On the supply of heavy planetary material to the magne- totail of Mercury”. In: Annales Geophysicae 31.10 (Oct. 2013), pp. 1673–1679. DOI: 10.5194/angeo-31-1673-2013.
[15] D. C. Delcourt et al. “A quantitative model of the planetary Na+ contri- bution to MercuryÂs magnetosphere”. In: Annales Geophysicae 21.8 (Aug. 2003), pp. 1723–1736. DOI: 10.5194/angeo-21-1723-2003.
[16] Dominique C Delcourt et al. “Centrifugally stimulated exospheric ion es- cape at Mercury”. In: Geophysical research letters 39.22 (2012).
[17] Willi Exner et al. “Influence of Mercury’s Exosphere on the Structure of the Magnetosphere”. In: Journal of Geophysical Research (Space Physics) 125.7, e27691 (July 2020), e27691. DOI: 10.1029/2019JA027691.
[18] S. Fatemi, A. R. Poppe, and S. Barabash. “Hybrid Simulations of Solar Wind Proton Precipitation to the Surface of Mercury”. In: Journal of Geo- physical Research (Space Physics) 125.4, e27706 (Apr. 2020), e27706. DOI: 10. 1029/2019JA027706.
[19] Shahab Fatemi et al. “AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics”. In: Journal of Physics Conference Series. Vol. 837. Journal of Physics Conference Series. May 2017, 012017, p. 012017. DOI: 10.1088/1742-6596/837/1/012017.
[20] Diana Gamborino, Audrey Vorburger, and Peter Wurz. “Mercury’s subso- lar sodium exosphere: an ab initio calculation to interpret MASCS/UVVS observations from MESSENGER”. In: Annales Geophysicae 37.4 (July 2019), pp. 455–470. DOI: 10.5194/angeo-37-455-2019.
[21] Austin N Glass et al. “A 3D MHD-particle tracing model of Na+ ener- gization on Mercury’s dayside”. In: Journal of Geophysical Research: Space Physics 126.11 (2021), e2021JA029587.
[22] DM Hunten, TH Morgan, and DE Shemansky. “The mercury atmo- sphere”. In: Mercury (1988), pp. 562–612.
[23] W. -H. Ip. “The sodium exosphere and magnetosphere of Mercury”. In: 13.5 (May 1986), pp. 423–426. DOI: 10.1029/GL013i005p00423.
[24] Diego Janches et al. “Meteoroids as one of the sources for exosphere for- mation on airless bodies in the inner solar system”. In: Space Science Re- views 217 (2021), pp. 1–41.
[25] Jamie M. Jasinski et al. “A transient enhancement of Mercury’s exosphere at extremely high altitudes inferred from pickup ions”. In: Nature Commu- nications 11, 4350 (Sept. 2020), p. 4350. DOI: 10.1038/s41467-020- 18220-2.
[26] Jamie M. Jasinski et al. “Photoionization Loss of Mercury’s Sodium Exosphere: Seasonal Observations by MESSENGER and the THEMIS Telescope”. In: 48.8, e92980 (Apr. 2021), e92980. DOI: 10 . 1029 / 2021GL092980.
[27] Xianzhe Jia et al. “Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conduct- ing core on the global interaction”. In: Journal of Geophysical Research: Space Physics 120.6 (2015), pp. 4763–4775.
[28] RE Johnson and R Baragiola. “Lunar surface: Sputtering and secondary ion mass spectrometry”. In: Geophysical Research Letters 18.11 (1991), pp. 2169–2172.
[29] R. M. Killen, M. Sarantos, and P. H. Reiff. “Space weather at Mercury”. In: Advances in Space Research 33.11 (Jan. 2004), pp. 1899–1904. DOI: 10.1016/ j.asr.2003.02.020.
[30] Rosemary M Killen, Thomas A Bida, and Thomas H Morgan. “The cal- cium exosphere of Mercury”. In: Icarus 173.2 (2005), pp. 300–311.
[31] Rosemary M. Killen. “Pathways for energization of Ca in Mercury’s exo- sphere”. In: 268 (Apr. 2016), pp. 32–36. DOI: 10.1016/j.icarus.2015. 12.035.
[32] Rosemary M. Killen and Joseph M. Hahn. “Impact vaporization as a pos- sible source of Mercury’s calcium exosphere”. In: 250 (Apr. 2015), pp. 230– 237. DOI: 10.1016/j.icarus.2014.11.035.
[33] Rosemary M. Killen and Wing-H. Ip. “The surface-bounded atmospheres of Mercury and the Moon”. In: Reviews of Geophysics 37.3 (Jan. 1999), pp. 361–406. DOI: 10.1029/1999RG900001.
[34] Rosemary M. Killen et al. “The Influence of Surface Binding Energy on Sputtering in Models of the Sodium Exosphere of Mercury”. In: 3.6, 139 (June 2022), p. 139. DOI: 10.3847/PSJ/ac67de.
[35] H Lammer et al. “The variability of Mercury’s exosphere by particle and radiation induced surface release processes”. In: Icarus 166.2 (2003), pp. 238–247.
[36] Francois Leblanc et al. “Mercury exosphere. III: Energetic characterization of its sodium component”. In: Icarus 223.2 (2013), pp. 963–974.
[37] François Leblanc and Jean-Yves Chaufray. “Mercury and Moon He exo- spheres: Analysis and modeling”. In: Icarus 216.2 (2011), pp. 551–559.
[38] François Leblanc et al. “Comparative Na and K Mercury and Moon Exo- spheres”. In: Space Science Reviews 218.1 (2022), p. 2.
[39] Patrick Lierle et al. “The Spatial Distribution and Temperature of Mer- cury’s Potassium Exosphere”. In: The Planetary Science Journal 3.4 (2022), p. 87.
[40] Theodore E. Madey et al. “Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon”. In: 103.E3 (Mar. 1998), pp. 5873–5888. DOI: 10.1029/ 98JE00230.
[41] Valeria Mangano et al. “Dynamical evolution of sodium anisotropies in the exosphere of Mercury”. In: 82 (July 2013), pp. 1–10. DOI: 10.1016/j. pss.2013.03.002.
[42] Valeria Mangano et al. “THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MES- SENGER”. In: 115 (Sept. 2015), pp. 102–109. DOI: 10.1016/j.pss. 2015.04.001.
[43] S. Massetti et al. “Short-term observations of double-peaked Na emission from Mercury’s exosphere”. In: 44.7 (Apr. 2017), pp. 2970–2977. DOI: 10. 1002/2017GL073090.
[44] William McClintock et al. “Insights into the Nature of Mercury’s Surface- bound Exosphere: Results from the Three MESSENGER Flybys”. In: 38th COSPAR Scientific Assembly. Vol. 38. Jan. 2010, p. 12.
[45] M. A. McGrath, R. E. Johnson, and L. J. Lanzerotti. “Sputtering of sodium on the planet Mercury”. In: 323.6090 (Oct. 1986), pp. 694–696. DOI: 10. 1038/323694a0.
[46] Anna Milillo et al. “Surface-Exosphere-Magnetosphere System Of Mer- cury”. In: Space Science Reviews 117 (Apr. 2005), pp. 397–443. DOI: 10. 1007/s11214-005-3593-z.
[47] Anna Milillo et al. “Investigating Mercurys environment with the two- spacecraft BepiColombo mission”. In: Space science reviews 216 (2020), pp. 1–78.
[48] Anna Milillo et al. “Exospheric Na distributions along the Mercury orbit with the THEMIS telescope”. In: Icarus 355 (2021), p. 114179.
[49] Alessandro Mura et al. “The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results”. In: 200.1 (Mar. 2009), pp. 1–11. DOI: 10.1016/j.icarus.2008.11.014.
[50] Stefano Orsini et al. “Mercury sodium exospheric emission as a proxy for solar perturbations transit”. In: Scientific Reports 8, 928 (Jan. 2018), p. 928. DOI: 10.1038/s41598-018-19163-x.
[51] Stefano Orsini et al. “SERENA: particle instrument suite for determining the Sun-Mercury interaction from BepiColombo”. In: Space science reviews 217 (2021), pp. 1–107.
[52] Christina Plainaki et al. “Investigation of the possible effects of comet Encke’s meteoroid stream on the Ca exosphere of Mercury”. In: Journal of Geophysical Research: Planets 122.6 (2017), pp. 1217–1226.
[53] Petr Pokorn, Menelaos Sarantos, and Diego Janches. “Reconciling the dawn–dusk asymmetry in Mercurys exosphere with the micrometeoroid impact directionality”. In: The Astrophysical Journal Letters 842.2 (2017), p. L17.
[54] A. Potter and T. Morgan. “Discovery of Sodium in the Atmosphere of Mercury”. In: Science 229.4714 (Aug. 1985), pp. 651–653. DOI: 10.1126/ science.229.4714.651.
[55] A. E. Potter and R. M. Killen. “Observations of the sodium tail of Mer- cury”. In: 194.1 (Mar. 2008), pp. 1–12. DOI: 10.1016/j.icarus.2007. 09.023.
[56] A. E. Potter, R. M. Killen, and T. H. Morgan. “Rapid changes in the sodium exosphere of Mercury”. In: 47.12 (Dec. 1999), pp. 1441–1448. DOI: 10. 1016/S0032-0633(99)00070-7.
[57] A. E. Potter, R. M. Killen, and M. Sarantos. “Spatial distribution of sodium on Mercury”. In: 181.1 (Mar. 2006), pp. 1–12. DOI: 10.1016/j.icarus. 2005.10.026.
[58] A. E. Potter and T. H. Morgan. “Discovery of Sodium and Potassium Va- por in the Atmosphere of the Moon”. In: Science 241.4866 (Aug. 1988), pp. 675–680. DOI: 10.1126/science.241.4866.675.
[59] JM Raines et al. “Plasma sources in planetary magnetospheres: Mercury”. In: Space Science Reviews 192 (2015), pp. 91–144.
[60] E Rognini et al. “Effects of mercury surface temperature on the sodium abundance in its exosphere”. In: Planetary and Space Science 212 (2022), p. 105397.
[61] Menelaos Sarantos et al. “A Bx-interconnected magnetosphere model for Mercury”. In: 49.14-15 (Dec. 2001), pp. 1629–1635. DOI: 10.1016/S0032- 0633(01)00100-3.
[62] Carl A Schmidt. “Monte Carlo modeling of north-south asymmetries in Mercury’s sodium exosphere”. In: Journal of Geophysical Research: Space Physics 118.7 (2013), pp. 4564–4571.
[63] Carl A. Schmidt et al. “The Rapid Imaging Planetary Spectrograph: Ob- servations of Mercury’s Sodium Exosphere in Twilight”. In: 1.1, 4 (Mar. 2020), p. 4. DOI: 10.3847/PSJ/ab76c9.
[64] James A. Slavin et al. “Mercury’s Magnetosphere After MESSENGER’s First Flyby”. In: Science 321.5885 (July 2008), p. 85. DOI: 10 . 1126 / science.1159040.
[65] James A. Slavin et al. “MESSENGER Observations of Magnetic Reconnec- tion in Mercurys Magnetosphere”. In: Science 324.5927 (May 2009), p. 606. DOI: 10.1126/science.1172011.
[66] W. H. Smyth. “Io’s sodium cloud - Explanation of the east-west asymme- tries”. In: 234 (Dec. 1979), pp. 1148–1153. DOI: 10.1086/157598.
[67] W. H. Smyth and M. R. Combi. “A General Model for Io’s Neutral Gas Clouds. II. Application to the Sodium Cloud”. In: 328 (May 1988), p. 888. DOI: 10.1086/166346.
[68] William H. Smyth and M. L. Marconi. “Theoretical Overview and Model- ing of the Sodium and Potassium Atmospheres of Mercury”. In: 441 (Mar. 1995), p. 839. DOI: 10.1086/175407.
[69] Weijie Sun et al. “MESSENGER observations of planetary ion enhance- ments at Mercury’s northern magnetospheric cusp during flux transfer event showers”. In: Journal of Geophysical Research: Space Physics 127.4 (2022), e2022JA030280.
[70] F. R. Toffoletto and T. W. Hill. “A nonsingular model of the open magneto- sphere”. In: 98.A2 (Feb. 1993), pp. 1339–1344. DOI: 10.1029/92JA02342.
[71] Ann L. Tyler, Richard W. H. Kozlowski, and Donald M. Hunten. “Obser- vations of sodium in the tenuous lunar atmosphere”. In: 15.10 (Sept. 1988), pp. 1141–1144. DOI: 10.1029/GL015i010p01141.
[72] J. Varela, F. Pantellini, and M. Moncuquet. “The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury’s sur- face”. In: 119 (Dec. 2015), pp. 264–269. DOI: 10.1016/j.pss.2015.10. 004. arXiv: 1608.03800 [astro-ph.EP].
[73] Y. -C. Wang and W. -H. Ip. “Source dependency of exospheric sodium on Mercury”. In: 216.2 (Dec. 2011), pp. 387–402. DOI: 10.1016/j.icarus. 2011.09.023.
[74] ALE Werner et al. “Ion density and phase space density distribution of planetary ions Na+, O+ and He+ in Mercurys magnetosphere”. In: Icarus 372 (2022), p. 114734.
[75] P. Wurz et al. “Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury”. In: 218.3, 10 (Apr. 2022), p. 10. DOI: 10.1007/s11214-022-00875-6.
[76] Peter Wurz and Helmut Lammer. “Monte-Carlo simulation of Mercury’s exosphere”. In: 164.1 (July 2003), pp. 1–13. DOI: 10 . 1016 / S0019 - 1035(03)00123-4. |