博碩士論文 109229008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.12.36.175
姓名 許溱讌(Chen-Yen Hsu)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(Exospheric Responses of Mercury to Solar Events)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 先前的研究透過地面觀測發現水星的外氣層中含有鈉原子(Potter & Morgan, 1985),而後,信使號在飛掠水星的過程發現水星的鈉層集中在高緯地區。不論地面望遠鏡或是太空船觀測都顯示水星的外氣層其實相當多變,這被歸因於多變的太陽風和行星際磁場的指向——外在環境和水星磁層交互作用,進而影響鈉原子的產生。

我們利用由Amitis程式模擬產生的資料作為部分初始條件,以此模擬水星鈉的外氣層分佈。由於希望得到水星真實環境的分析,我們以太陽神號在水星軌道的資料作為參數,運行Amitis程式得到太陽風質子在水星表面沉降的分佈;在太陽神號的資料中,我們找到了一個高速太陽風事件,並選定了包含事件前、中、後時間點的參數進行模擬。我們的結果顯示,行星際磁場在x方向(太陽與水星連線方向)的分量可能較大程度地影響水星鈉層南北不對稱的分佈,而z方向(平行水星自轉軸方向)的分量則決定了鈉的總體產生量。

未來我們會以同樣的方法模擬其他太陽風事件(例如:日冕物質拋射),並與日後貝皮可倫坡計畫的資料比較,進行進一步的分析。
摘要(英) In 1985, sodium was first detected in Mercury’s exosphere (Potter & Morgan, 1985). Afterwards, the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) spacecraft made in-situ measurements about the Mercury’s exosphere and showed two-peak structures of sodium exosphere during the flybys. Both ground-based and in-situ observations had shown us different profiles of Mercury’s sodium exosphere and it is found to be highly variable. This is thought to be resulted from the variability of solar wind conditions and the orientation of interplanetary magnetic field (IMF), given the interaction between solar wind and Mercury’s magnetosphere and sputtering.

We simulate the Mercury’s sodium exosphere with the solar wind proton precipitation data generated from the Amitis simulation code, which is a three-dimensional time-dependent hybrid model of plasma (Fatemi et al., 2017; Fatemi, Poppe & Barabash, 2020). We focus on the datasets generated based on Helios data to trace the realistic solar wind conditions at Mercury and how the Mercury’s magnetosphere and sodium exosphere change with the environment. Our results show the morphology of sodium during a high-speed stream (HSS) event covering pre-HSS, HSS and post-HSS phases. It may explain the north-south asymmetry on Mercury. The relative flux in northern and southern cusps is correlated with Bx. However, the total production rate is still controlled by Bz.

In the future, the numerical algorithm and methodology generated will be applied to a series of solar wind events including interplanetary coronal mass ejections (ICMEs) with a view to participate in the upcoming BepiColombo observations at Mercury beginning in 2025.
關鍵字(中) ★ 水星
★ 外氣層
★ 信使號
關鍵字(英) ★ Mercury
★ Sodium Exosphere
★ MESSENGER
★ BepiColombo
論文目次 摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
1 Introduction 1
1.1 Mercury’sExosphere.......................... 1
1.2 Mercury’s Magnetosphere & Solar Wind Interaction.......................... 3
1.3 Source Mechanisms of Sodium Exosphere.......................... 5
2 Simulations & Analyses 9
2.1 Initial Condition............................. 9
2.1.1 Source Region.......................... 9
2.1.2 Initial Velocity.......................... 12
2.2 Solar Wind Proton Precipitation Data................. 13
2.2.1 Input Parameters – Helios Data................ 14
2.2.2 Output Data – Solar Wind Proton Precipitation.......................... 18
2.3 Radiation Pressure........................... 22
2.4 Loss, Weighting & Density....................... 23
3 Results 27
4 Discussion & Future Works 41
4.1 Variability................................ 41
4.2 ICME events............................... 41
4.3 Sodium Ion................................ 45
Bibliography 47
參考文獻 [1] Brian J. Anderson et al. “The Global Magnetic Field of Mercury from MES- SENGER Orbital Observations”. In: Science 333.6051 (Sept. 2011), p. 1859. DOI: 10.1126/science.1211001.
[2] Brian J. Anderson et al. “Low-degree structure in Mercury’s planetary magnetic field”. In: Journal of Geophysical Research (Planets) 117, E00L12 (Dec. 2012), E00L12. DOI: 10.1029/2012JE004159.
[3] W. Baumjohann et al. “The magnetosphere of Mercury and its solar wind environment: Open issues and scientific questions”. In: Advances in Space Research 38.4 (Jan. 2006), pp. 604–609. DOI: 10.1016/j.asr.2005.05. 117.
[4] Chris J Bennett et al. “Investigating potential sources of Mercury’s exo- spheric Calcium: Photon-stimulated desorption of Calcium Sulfide”. In: Journal of Geophysical Research: Planets 121.2 (2016), pp. 137–146.
[5] Thomas A. Bida, Rosemary M. Killen, and Thomas H. Morgan. “Discovery of calcium in Mercury’s atmosphere”. In: 404.6774 (Mar. 2000), pp. 159– 161. DOI: 10.1038/35004521.
[6] A. L. Broadfoot, D. E. Shemansky, and S. Kumar. “Mariner 10: Mer- cury atmosphere”. In: 3.10 (Oct. 1976), pp. 577–580. DOI: 10 . 1029 / GL003i010p00577.
[7] A. L. Broadfoot et al. “Mercury’s Atmosphere from Mariner 10: Prelimi- nary Results”. In: Science 185.4146 (July 1974), pp. 166–169. DOI: 10.1126/ science.185.4146.166.
[8] Matthew H Burger et al. “Modeling MESSENGER observations of calcium in Mercury’s exosphere”. In: Journal of Geophysical Research: Planets 117.E12 (2012).
[9] Matthew H. Burger et al. “Seasonal variations in Mercurys dayside cal- cium exosphere”. In: 238 (Aug. 2014), pp. 51–58. DOI: 10 . 1016 / j . icarus.2014.04.049.
[10] TA Cassidy et al. “Detection of large exospheric enhancements at Mer- cury due to meteoroid impacts”. In: The Planetary Science Journal 2.5 (2021), p. 175.
[11] Timothy A. Cassidy et al. “Mercury’s seasonal sodium exosphere: MES- SENGER orbital observations”. In: 248 (Mar. 2015), pp. 547–559. DOI: 10. 1016/j.icarus.2014.10.037.
[12] Apostolos A. Christou, Rosemary M. Killen, and Matthew H. Burger. “The meteoroid stream of comet Encke at Mercury: Implications for MErcury Surface, Space ENvironment, GEochemistry, and Ranging observations of the exosphere”. In: 42.18 (Sept. 2015), pp. 7311–7318. DOI: 10.1002/ 2015GL065361.
[13] Mark J. Cintala. “Impact-induced thermal effects in the lunar and mer- curian regoliths”. In: 97.E1 (Jan. 1992), pp. 947–973. DOI: 10 . 1029 / 91JE02207.
[14] D. C. Delcourt. “On the supply of heavy planetary material to the magne- totail of Mercury”. In: Annales Geophysicae 31.10 (Oct. 2013), pp. 1673–1679. DOI: 10.5194/angeo-31-1673-2013.
[15] D. C. Delcourt et al. “A quantitative model of the planetary Na+ contri- bution to MercuryÂs magnetosphere”. In: Annales Geophysicae 21.8 (Aug. 2003), pp. 1723–1736. DOI: 10.5194/angeo-21-1723-2003.
[16] Dominique C Delcourt et al. “Centrifugally stimulated exospheric ion es- cape at Mercury”. In: Geophysical research letters 39.22 (2012).
[17] Willi Exner et al. “Influence of Mercury’s Exosphere on the Structure of the Magnetosphere”. In: Journal of Geophysical Research (Space Physics) 125.7, e27691 (July 2020), e27691. DOI: 10.1029/2019JA027691.
[18] S. Fatemi, A. R. Poppe, and S. Barabash. “Hybrid Simulations of Solar Wind Proton Precipitation to the Surface of Mercury”. In: Journal of Geo- physical Research (Space Physics) 125.4, e27706 (Apr. 2020), e27706. DOI: 10. 1029/2019JA027706.
[19] Shahab Fatemi et al. “AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics”. In: Journal of Physics Conference Series. Vol. 837. Journal of Physics Conference Series. May 2017, 012017, p. 012017. DOI: 10.1088/1742-6596/837/1/012017.
[20] Diana Gamborino, Audrey Vorburger, and Peter Wurz. “Mercury’s subso- lar sodium exosphere: an ab initio calculation to interpret MASCS/UVVS observations from MESSENGER”. In: Annales Geophysicae 37.4 (July 2019), pp. 455–470. DOI: 10.5194/angeo-37-455-2019.
[21] Austin N Glass et al. “A 3D MHD-particle tracing model of Na+ ener- gization on Mercury’s dayside”. In: Journal of Geophysical Research: Space Physics 126.11 (2021), e2021JA029587.
[22] DM Hunten, TH Morgan, and DE Shemansky. “The mercury atmo- sphere”. In: Mercury (1988), pp. 562–612.
[23] W. -H. Ip. “The sodium exosphere and magnetosphere of Mercury”. In: 13.5 (May 1986), pp. 423–426. DOI: 10.1029/GL013i005p00423.
[24] Diego Janches et al. “Meteoroids as one of the sources for exosphere for- mation on airless bodies in the inner solar system”. In: Space Science Re- views 217 (2021), pp. 1–41.
[25] Jamie M. Jasinski et al. “A transient enhancement of Mercury’s exosphere at extremely high altitudes inferred from pickup ions”. In: Nature Commu- nications 11, 4350 (Sept. 2020), p. 4350. DOI: 10.1038/s41467-020- 18220-2.
[26] Jamie M. Jasinski et al. “Photoionization Loss of Mercury’s Sodium Exosphere: Seasonal Observations by MESSENGER and the THEMIS Telescope”. In: 48.8, e92980 (Apr. 2021), e92980. DOI: 10 . 1029 / 2021GL092980.
[27] Xianzhe Jia et al. “Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conduct- ing core on the global interaction”. In: Journal of Geophysical Research: Space Physics 120.6 (2015), pp. 4763–4775.
[28] RE Johnson and R Baragiola. “Lunar surface: Sputtering and secondary ion mass spectrometry”. In: Geophysical Research Letters 18.11 (1991), pp. 2169–2172.
[29] R. M. Killen, M. Sarantos, and P. H. Reiff. “Space weather at Mercury”. In: Advances in Space Research 33.11 (Jan. 2004), pp. 1899–1904. DOI: 10.1016/ j.asr.2003.02.020.
[30] Rosemary M Killen, Thomas A Bida, and Thomas H Morgan. “The cal- cium exosphere of Mercury”. In: Icarus 173.2 (2005), pp. 300–311.
[31] Rosemary M. Killen. “Pathways for energization of Ca in Mercury’s exo- sphere”. In: 268 (Apr. 2016), pp. 32–36. DOI: 10.1016/j.icarus.2015. 12.035.
[32] Rosemary M. Killen and Joseph M. Hahn. “Impact vaporization as a pos- sible source of Mercury’s calcium exosphere”. In: 250 (Apr. 2015), pp. 230– 237. DOI: 10.1016/j.icarus.2014.11.035.
[33] Rosemary M. Killen and Wing-H. Ip. “The surface-bounded atmospheres of Mercury and the Moon”. In: Reviews of Geophysics 37.3 (Jan. 1999), pp. 361–406. DOI: 10.1029/1999RG900001.
[34] Rosemary M. Killen et al. “The Influence of Surface Binding Energy on Sputtering in Models of the Sodium Exosphere of Mercury”. In: 3.6, 139 (June 2022), p. 139. DOI: 10.3847/PSJ/ac67de.
[35] H Lammer et al. “The variability of Mercury’s exosphere by particle and radiation induced surface release processes”. In: Icarus 166.2 (2003), pp. 238–247.
[36] Francois Leblanc et al. “Mercury exosphere. III: Energetic characterization of its sodium component”. In: Icarus 223.2 (2013), pp. 963–974.
[37] François Leblanc and Jean-Yves Chaufray. “Mercury and Moon He exo- spheres: Analysis and modeling”. In: Icarus 216.2 (2011), pp. 551–559.
[38] François Leblanc et al. “Comparative Na and K Mercury and Moon Exo- spheres”. In: Space Science Reviews 218.1 (2022), p. 2.
[39] Patrick Lierle et al. “The Spatial Distribution and Temperature of Mer- cury’s Potassium Exosphere”. In: The Planetary Science Journal 3.4 (2022), p. 87.
[40] Theodore E. Madey et al. “Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon”. In: 103.E3 (Mar. 1998), pp. 5873–5888. DOI: 10.1029/ 98JE00230.
[41] Valeria Mangano et al. “Dynamical evolution of sodium anisotropies in the exosphere of Mercury”. In: 82 (July 2013), pp. 1–10. DOI: 10.1016/j. pss.2013.03.002.
[42] Valeria Mangano et al. “THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MES- SENGER”. In: 115 (Sept. 2015), pp. 102–109. DOI: 10.1016/j.pss. 2015.04.001.
[43] S. Massetti et al. “Short-term observations of double-peaked Na emission from Mercury’s exosphere”. In: 44.7 (Apr. 2017), pp. 2970–2977. DOI: 10. 1002/2017GL073090.
[44] William McClintock et al. “Insights into the Nature of Mercury’s Surface- bound Exosphere: Results from the Three MESSENGER Flybys”. In: 38th COSPAR Scientific Assembly. Vol. 38. Jan. 2010, p. 12.
[45] M. A. McGrath, R. E. Johnson, and L. J. Lanzerotti. “Sputtering of sodium on the planet Mercury”. In: 323.6090 (Oct. 1986), pp. 694–696. DOI: 10. 1038/323694a0.
[46] Anna Milillo et al. “Surface-Exosphere-Magnetosphere System Of Mer- cury”. In: Space Science Reviews 117 (Apr. 2005), pp. 397–443. DOI: 10. 1007/s11214-005-3593-z.
[47] Anna Milillo et al. “Investigating Mercurys environment with the two- spacecraft BepiColombo mission”. In: Space science reviews 216 (2020), pp. 1–78.
[48] Anna Milillo et al. “Exospheric Na distributions along the Mercury orbit with the THEMIS telescope”. In: Icarus 355 (2021), p. 114179.
[49] Alessandro Mura et al. “The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results”. In: 200.1 (Mar. 2009), pp. 1–11. DOI: 10.1016/j.icarus.2008.11.014.
[50] Stefano Orsini et al. “Mercury sodium exospheric emission as a proxy for solar perturbations transit”. In: Scientific Reports 8, 928 (Jan. 2018), p. 928. DOI: 10.1038/s41598-018-19163-x.
[51] Stefano Orsini et al. “SERENA: particle instrument suite for determining the Sun-Mercury interaction from BepiColombo”. In: Space science reviews 217 (2021), pp. 1–107.
[52] Christina Plainaki et al. “Investigation of the possible effects of comet Encke’s meteoroid stream on the Ca exosphere of Mercury”. In: Journal of Geophysical Research: Planets 122.6 (2017), pp. 1217–1226.
[53] Petr Pokorn, Menelaos Sarantos, and Diego Janches. “Reconciling the dawn–dusk asymmetry in Mercurys exosphere with the micrometeoroid impact directionality”. In: The Astrophysical Journal Letters 842.2 (2017), p. L17.
[54] A. Potter and T. Morgan. “Discovery of Sodium in the Atmosphere of Mercury”. In: Science 229.4714 (Aug. 1985), pp. 651–653. DOI: 10.1126/ science.229.4714.651.
[55] A. E. Potter and R. M. Killen. “Observations of the sodium tail of Mer- cury”. In: 194.1 (Mar. 2008), pp. 1–12. DOI: 10.1016/j.icarus.2007. 09.023.
[56] A. E. Potter, R. M. Killen, and T. H. Morgan. “Rapid changes in the sodium exosphere of Mercury”. In: 47.12 (Dec. 1999), pp. 1441–1448. DOI: 10. 1016/S0032-0633(99)00070-7.
[57] A. E. Potter, R. M. Killen, and M. Sarantos. “Spatial distribution of sodium on Mercury”. In: 181.1 (Mar. 2006), pp. 1–12. DOI: 10.1016/j.icarus. 2005.10.026.
[58] A. E. Potter and T. H. Morgan. “Discovery of Sodium and Potassium Va- por in the Atmosphere of the Moon”. In: Science 241.4866 (Aug. 1988), pp. 675–680. DOI: 10.1126/science.241.4866.675.
[59] JM Raines et al. “Plasma sources in planetary magnetospheres: Mercury”. In: Space Science Reviews 192 (2015), pp. 91–144.
[60] E Rognini et al. “Effects of mercury surface temperature on the sodium abundance in its exosphere”. In: Planetary and Space Science 212 (2022), p. 105397.
[61] Menelaos Sarantos et al. “A Bx-interconnected magnetosphere model for Mercury”. In: 49.14-15 (Dec. 2001), pp. 1629–1635. DOI: 10.1016/S0032- 0633(01)00100-3.
[62] Carl A Schmidt. “Monte Carlo modeling of north-south asymmetries in Mercury’s sodium exosphere”. In: Journal of Geophysical Research: Space Physics 118.7 (2013), pp. 4564–4571.
[63] Carl A. Schmidt et al. “The Rapid Imaging Planetary Spectrograph: Ob- servations of Mercury’s Sodium Exosphere in Twilight”. In: 1.1, 4 (Mar. 2020), p. 4. DOI: 10.3847/PSJ/ab76c9.
[64] James A. Slavin et al. “Mercury’s Magnetosphere After MESSENGER’s First Flyby”. In: Science 321.5885 (July 2008), p. 85. DOI: 10 . 1126 / science.1159040.
[65] James A. Slavin et al. “MESSENGER Observations of Magnetic Reconnec- tion in Mercurys Magnetosphere”. In: Science 324.5927 (May 2009), p. 606. DOI: 10.1126/science.1172011.
[66] W. H. Smyth. “Io’s sodium cloud - Explanation of the east-west asymme- tries”. In: 234 (Dec. 1979), pp. 1148–1153. DOI: 10.1086/157598.
[67] W. H. Smyth and M. R. Combi. “A General Model for Io’s Neutral Gas Clouds. II. Application to the Sodium Cloud”. In: 328 (May 1988), p. 888. DOI: 10.1086/166346.
[68] William H. Smyth and M. L. Marconi. “Theoretical Overview and Model- ing of the Sodium and Potassium Atmospheres of Mercury”. In: 441 (Mar. 1995), p. 839. DOI: 10.1086/175407.
[69] Weijie Sun et al. “MESSENGER observations of planetary ion enhance- ments at Mercury’s northern magnetospheric cusp during flux transfer event showers”. In: Journal of Geophysical Research: Space Physics 127.4 (2022), e2022JA030280.
[70] F. R. Toffoletto and T. W. Hill. “A nonsingular model of the open magneto- sphere”. In: 98.A2 (Feb. 1993), pp. 1339–1344. DOI: 10.1029/92JA02342.
[71] Ann L. Tyler, Richard W. H. Kozlowski, and Donald M. Hunten. “Obser- vations of sodium in the tenuous lunar atmosphere”. In: 15.10 (Sept. 1988), pp. 1141–1144. DOI: 10.1029/GL015i010p01141.
[72] J. Varela, F. Pantellini, and M. Moncuquet. “The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury’s sur- face”. In: 119 (Dec. 2015), pp. 264–269. DOI: 10.1016/j.pss.2015.10. 004. arXiv: 1608.03800 [astro-ph.EP].
[73] Y. -C. Wang and W. -H. Ip. “Source dependency of exospheric sodium on Mercury”. In: 216.2 (Dec. 2011), pp. 387–402. DOI: 10.1016/j.icarus. 2011.09.023.
[74] ALE Werner et al. “Ion density and phase space density distribution of planetary ions Na+, O+ and He+ in Mercurys magnetosphere”. In: Icarus 372 (2022), p. 114734.
[75] P. Wurz et al. “Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury”. In: 218.3, 10 (Apr. 2022), p. 10. DOI: 10.1007/s11214-022-00875-6.
[76] Peter Wurz and Helmut Lammer. “Monte-Carlo simulation of Mercury’s exosphere”. In: 164.1 (July 2003), pp. 1–13. DOI: 10 . 1016 / S0019 - 1035(03)00123-4.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明