博碩士論文 110324095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:13.59.126.25
姓名 張勛婷(Hsun-Ting Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用吸附性管式膜於煙道氣二氧化碳的捕集
(Study of CO2 capture by adsorption tubular membrane with pressure swing adsorption process)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著因人類活動造成的全球暖化日漸嚴重,若人們持續製造並排放大量溫室氣體,將會使全球暖化加劇。因此,致力於降低二氧化碳排放量,以避免未來不可挽回的氣候變遷,為目前重要的議題。
近年來,科學家們提出許多捕獲二氧化碳的技術。因壓力變動式吸附捕集技術具有低能耗、低建廠設備投入且高工作量的優勢,我們採用此技術進行二氧化碳捕集的研究。本研究使用華懋科技股份有限公司製造之吸附性管式膜作為吸附材,並模擬分離電廠煙道氣成分,採用15%二氧化碳和85%氮氣的混合器作為進料氣體。
在此研究中,我們使用數位記錄微量天平,測量吸附材在二氧化碳與氮氣環境下之等溫吸附平衡曲線,並從等溫吸附曲線計算吸附劑之平衡選擇率來評估吸附性管式膜之吸附效能,再將實驗數據用Langmuir-Freundlich等溫吸附式擬合得到式中各參數。
第二部分我們對填塔式管式膜模組進行突破實驗,在相同壓力、室溫且進料氣體成分為15%二氧化碳的進料條件下,改變吸附材的再生方法或進料流量測量其飽和吸附容量,並探討其影響。
最後,利用田口品質工程方法配合實驗設計法,規劃各個實驗的實驗變因配置,以在最少的實驗次數下,準確的統計實驗性能及預測其在單塔四步驟操作下最佳的表現。此研究選定吸附脫附時間、進料流量和同向減壓壓力為主要分析的因子,並針對此三個主要因子,分析計算其回歸模型以預測其他配置的實驗結果,得到當操作條件為270秒吸附脫附時間、進料流量3.98 L/min和同向減壓壓力為0.3 bar時,有最高純度84.06%,此時回收率為65.98%。
摘要(英) The effects of human-caused global warming are getting serious year by year, and will worsen as long as humans generate more greenhouse gases, especially carbon dioxide, to the atmosphere. If we can reduce carbon dioxide emission, we may avoid some of the worst effects.
Currently, there are various technologies for capturing carbon dioxide. Due to the advantages of low energy consumption, low capital investment and highly operating capability, the pressure swing adsorption (PSA) technology was chosen in this study. The adsorptive tubular membrane fabricated by Desiccant Technology Co., Ltd. (DTECH) will be used as the adsorbent material for separating capturing carbon dioxide (15% v/v) and nitrogen, simulating the flue gas from coal-fired power station.
In this study, Thermo Cahn D-200 Digital Recording Balance is used to measure the isotherm behaviors of pure carbon dioxide and nitrogen gases. The equilibrium selectivity was calculated from isothermal data to consider the separating performance of DTC tubular membrane. The Langmuir-Freundlich isotherm model was used to fit the experimental data of the isotherm and to obtain the parameters.
Subsequently, the breakthrough experiments were conducted by using the tubular-membrane-filled bed to measure the fully saturated adsorption capacity of the adsorbent bed under different flow rates at constant pressure and room temperature with the feeding composition of 15% CO2 and 85% N2.
Finally, the single-bed four-step PSA experiment was processed and serial designed experiments by Taguchi method and design of experiments will be tested and analyzed. The major impact factors of adsorption and desorption time, feed flow rate and co-current depressurization from the data analyzed from PSA experiments are determined and the regression model are investigated.
The optimal operating conditions are 270 s adsorption and desorption time, 3.98 L/min feed flow rates and 0.3 bar co-current depressurization pressure with CO2 product purity 84.06% and recovery 65.98%.
關鍵字(中) ★ 二氧化碳
★ 吸附
關鍵字(英) ★ carbon dioxide
★ adsorption
論文目次 摘要 i
ABSTRACT vii
致謝 ix
目錄 xi
圖目錄 xiv
表目錄 xix
第一章、緒論 1
第二章、簡介及文獻回顧 7
2-1 吸附之簡介 7
2-2 PSA程序之發展及改進 9
2-3 文獻回顧 14
第三章、實驗設備與方法 16
3-1 等溫吸附曲線實驗 16
3-1-1 等溫吸附實驗裝置 16
3-1-2等溫吸附實驗步驟 20
3-1-3 空白實驗步驟 22
3-2 單塔吸附實驗 24
3-2-1 單塔吸附實驗裝置 24
3-2-2 雙塔式變壓吸附實驗裝置 26
3-2-3 突破實驗操作步驟 32
3-3 單塔變壓吸附實驗裝置、各部規格及特性 35
3-3-1 單塔變壓吸附實驗裝置、進料條件 35
3-3-2 單塔變壓吸附程序實驗之實驗設計分析 36
第四章、實驗結果與分析 39
4-1 吸附劑選擇率計算與討論 39
4-2 貫流曲線實驗結果與討論 43
4-2-1 再生方法對貫流曲線之影響 45
4-2-2 進料流量對貫流曲線之影響 48
4-3 單塔變壓吸附程序 52
4-3-1 單塔變壓吸附程序實驗計畫與分析方法 52
4-3-2單塔變壓吸附程序實驗結果與分析 55
4-3-3吸附脫附時間對單塔四步驟變壓吸附程序之影響 76
4-3-4 流量對單塔四步驟變壓吸附程序之影響 78
4-3-5 同向減壓壓力對單塔四步驟變壓吸附程序之影響 80
4-3-6 單塔四步驟變壓吸附程序之回歸分析與模型 82
4-3-7 單塔四步驟變壓吸附程序之確保性實驗 (Confirmation run) 84
4-3-8 回歸模型修正 89
4-3-9 單塔四步驟實驗結果與討論 96
第五章、結論 105
參考文獻 107
參考文獻 [1] Intergovernmental Panel on Climate Change (IPCC), Synthesis Report of the IPCC Fourth Assessment Report (Climate Change 2007): Summary for Policymakers, 2008.
[2] Intergovernmental Panel on Climate Change (IPCC), The IPCC’s Fifth Assessment Report (AR5), 2014.
[3] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.-M. Amann and C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Applied Thermal Engineering, vol. 30 (1), pp. 53–62, 2010.
doi: 10.1016/j.applthermaleng.2009.05.005
[4] International Maritime Organization (IMO), London Convention, 2016.
https://en.wikipedia.org/wiki/London_Convention_on_the_Prevention_of_Marine_Pollution_by_Dumping_of_Wastes_and_Other_Matter
[5] S. Akkaya and U. Bakkal, Carbon Leakage Along with the Green Paradox Against Carbon Abatement? A Review Based on Carbon Tax, Folia Oeconomica Stetinensia, vol. 20 (1), pp. 25–44, 2020. doi:10.2478/foli-2020-0002
[6] 楊閎舜, 周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 第63卷, 83-97頁, 2016.
[7] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University Press, Pittsburgh, 2010.
[8] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, U.S. Patent 2944627, 1960.
[9] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and technology, Springer Science & Business Media, Berlin, 2012.
[10] W.-K. Choi, T.-I. Kwon, Y.-K. Yeo, H. Lee, H. K. Song and B.-K. Na, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, vol. 20(4), pp. 617-623, 2003.
doi: 10.1007/BF02706897
[11] R. T. Yang, Gas Separation by Adsorption Process, Imperial College Press, Lodon, 1997.
[12] P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
doi: 10.1016/j.seppur.2017.11.002
[13] G. De M. Pierre and D. Daniel, Process for separating a binary gaseous mixture by adsorption, U.S. Patent 3155468, 1964.
[14] B.-K. Na, H. Lee, K.-K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. vol 41(22), pp. 5498-5503, 2002.
doi: 10.1021/ie0109509
[15] K. Chihara and M. Suzuki, Air drying by pressure swing adsorption, Journal of Chemical Engineering of Japan, vol. 16(4), pp. 293-299, 1983.
doi: 10.1252/jcej.16.293
[16] J. J. Collins, Air Separation by Adsorption, U.S. Patent 4026680, 1975.
[17] S. Doong and R. Yang, Hydrogen purification by the multibed pressure swing adsorption process, Reactive Polymers, Ion Exchangers, Sorbents, vol. 6(1), pp. 7-13, 1987.
doi: 10.1016/0167-6989(87)90202-9
[18] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, vol. 50(11), pp. 2904-2917, 2004.
doi: 10.1002/aic.10223
[19] A. Fuderer and E. Rudelstorfer, Selective Adsorption Process, U.S. Patent 3986849, 1976.
[20] S. Ahn, Y.-W. You, D.-G. Lee, K.-H. Kim, M. Oh and C.-H. Lee, Layered two- and four-bed PSA processes for H2 recovery from coal gas, Chemical Engineering Science, vol. 68, pp.413-423, 2012.
doi: 10.1016/j.ces.2011.09.053
[21] Z. Guan, Y. Wang, X. Yu, Y. Shen, D. He, Z. Tang, W. Li and D. Zhang, Simulaiton and analysis of dual-reflux pressure swing adsorption using silica gel for blue coal gas initial separation, Internation Journal of Hydrogen Energy, vol. 46(1), pp. 683-696, 2021.
doi: 10.1016/j.ijhydene.2020.09.209
[22] J. Xiao, Y. Peng, P. Bénard and R. Chahine, Thermal effect on breakthrough curve of pressure swing adsorption for hydrogen purification, International Journal of Hydrogen Energy, vol. 41(19), pp. 8236-8245, 2016.
doi: 10.1016/j.ijhydene.2015.11.126
[23] B. Kottititum, T. Srinophakun, N. Phongsai and Q. T. Phung, Optimization of a Six-Step Pressure Swing Adsorption Process for Biogas Separation on a Commercial Scale, Applied Sciences, vol. 10(14), pp. 4692-4710, 2020.
doi: 10.3390/app10144692
[24] Y.-D. Chiang, H.-Y. Lian, S.-Y. Leo, S.-G. Wang, Y. Yamauchi and K. C.-W. Wu, Controlling Particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method, The Journal of Physical Chemistry, vol. 115, pp. 13158-13165, 2011.
doi: 10.1021/jp201017e
[25] V. P. Srinivasan, S. Balamurugan, B. Balakarthick, S. D. Darshan and A. B. D. Prabhu, Experimental investigation on ultrasonic metal welding of copper sheet with copper wire using Taguchi method, Materials Today: Proceedings, vol. 45(part 2), pp. 495-501, 2021.
doi: 10.1016/j.matpr.2020.02.100
[26] 實驗設計(DOE)入門:經典篩選設計與全因子設計,
https://community.jmp.com/t5/JMP-Blog/DOE/ba-p/423195, accessed on July 3, 2023.
[27] F. Yates, K. Mather, Ronald Aylmer Fisher 1890–1962, Biographical Memoirs of Fellows of the Royal Society, pp. 91–129, 1963.
doi:10.1098/rsbm.1963.0006
[28] J.R. Karmoker, I. Hasan, N. Ahmed, M. Saifuddin and M.S.Reza, Development and Optimization of Acyclovir Loaded Mucoadhesive Microspheres by Box -Behnken Design, Journal of Pharmaceutical Sciences, vol. 18(1), pp. 1–12, 2019.
doi:10.3329/dujps.v18i1.41421.
[29] David M. Steinberg, Georage Box and the design of experiments: statistics and discovery, Applied Stochastic Models in Business and Industry, vol. 30, pp. 36-45, 2017.
doi: 10.1002/asmb.2017
[30] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學碩士論文, 民國109年6月.
[31] W. L. McCabe, J. C. Smith and P. Harriott, Unit operations of chemical engineering, 7th ed, McGraw-Hill Education, New York, 2005.
[32] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, 2nd ed, pp. 18, Springer, New York, 2020.
[33] J. Berkson, Application of the Logistic Function to Bio-Assay, Journal of the American Statistical Association, vol. 39(227), pp. 357–365, 1944.
doi: 10.2307/2280041
[34] G. S. Peace, Taguchi Methods: A Hands-on Approach, Addison-Wesley, Boston, 1992.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明