博碩士論文 110622018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:3.19.56.45
姓名 張瑋祐(Wei-You Zhang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 2021南投深部地震的構造意義
相關論文
★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化★ 利用短週期臨時地震觀測網分析菲律賓明多洛島地震分佈
★ 利用接收函數法分析遠震寬頻資料推估宜蘭平原地殼厚度★ 利用噪訊成像反演宜蘭平原上部地殼 三維高解析度S波速度構造
★ 菲律賓民都洛島西北地震地體和上部地函速度構造★ 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性
★ 利用匹配定位法探討 2017 Batangas 地震序列之完整活動度★ 藉由剪力波分離參數探究菲律賓民多洛島之上部地函非均向性
★ 以雙差分定位法重新定位2017 Batangas地震序列★ 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析
★ 台灣東北部地下三維高解析度P波速度構造與其地體構造意涵★ 印度尼西亞蘇拉威西島地震構造
★ 利用地震與測地資料聯合逆推2022年九月關山地震與池上地震的破裂過程★ 以二維地震波模擬探討臺灣東北部雙重P波之觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 南投縣仁愛鄉在2021/09/13發生一起芮氏規模5.6,深度達到46.1公里的地震事件,從過去的地震活動分布顯示,南投地震發生在一群獨立且狹窄的深部地震群內,看起來與班尼奧夫帶沒有直接的關聯。為了瞭解異常深部地震群的發生機制與其幾何樣貌,並探討此異常深部地震群為碰撞造山的演化機制中,帶來什麼樣的暗示。我們使用密度分群法(DBSCAN, Kriegel et al., 2011)先對異常深部地震群進行分群,可以分為西群與東群,再分別對西群與東群使用雙差分定位法(HypoDD, Waldhauser and Ellsworth 2000)進行重新定位,得到更精確的震源位置。參考許多前人的研究,我們認為西群的發震機制是因為下部地殼有較強的剪切強度,岩石具有累積跟釋放應變能的能力,加上區域地震產生的裂隙提供管道讓流體能夠流滲至下部地殼,造成岩石的弱化與脆變,讓地震更容易發生,應力來源是已經隱沒到較深處的南中國海岩石圈的重力作用,加上緊跟在海洋岩石圈後頭的大陸性岩石圈,因密度較低產生向上的浮力。而東群的發震機制我們認為有兩種可能,第一種是鐵鎂質麻粒岩隨著歐亞板塊隱沒到更深處的位置,使得區域有較高的岩石剪切強度,而裂隙提供管道讓流體能夠弱化岩石與發生脆變。第二種則是由於榴輝岩化的發生,使得岩石相變脫水,導致地震的發生,應力來源為菲律賓海板塊所主導。
另外,南投地震為異常深部地震群內規模最大的事件,因此我們可以藉由地震波的體波(body wave)訊號對其進行分析,並研究波線路徑上可能經過的異常構造。
本研究從台灣陣列(Formosa Array)下載南投地震的波形資料,透過計算互相關函數得到北台灣S波相對到時差的特徵分布。我們發現在接近最北的三個測站KE01、KE06與VO05(震央方位角約30度)有明顯較快的S波到時,從波傳路徑順推的結果與速度構造模型顯示(Huang et al., 2014b),波線在行徑的過程中經過異常的高速帶。根據Su et al. (2019)的研究,此異常高速帶為含水量較少的榴輝岩相變玄武岩所導致。
摘要(英) The September 13, 2021 Nantou earthquake (ML 5.6, depth 46.1 km) occurred within a narrow zone of deep seismicity (35-80 km) beneath central Taiwan. This study aims to enhance our understanding of the seismic distribution within the deep seismic zone, investigate its underlying mechanism, and explore its tectonic implications. Additionally, the study examines variations in the S-wave arrival time from the Nantou earthquake.
To accomplish the first objective, events within the deep seismic zone from the CWBSN catalogue were sorted out and clustered using the density-based spatial clustering of applications with noise (DBSCAN, Kriegel et al., 2011). The two clusters thus derived were relocated using the double-difference algorithm (HypoDD) on a multiple events relocation scheme (Waldhauser and Ellsworth 2000). From a tectonic standpoint, we interpret the western cluster as being associated with the strong lower crust, characterized by mafic granulite and fault weakening induced by fluid. The source of stress is dominated by the slab pull of the South China Sea plate. As for the eastern cluster, two potential scenarios are proposed. First, as the Eurasian plate subducts deeper, the scenario may be similar to that of the western cluster. Secondly, the presence of eclogitization beneath the continental mountain root suggests the detachment of the oceanic lithosphere from the continental lithosphere. The source of stress is dominated by the collision of the Philippine Sea plate.
Regarding the second objective, S-wave waveforms from the Nantou earthquake, recorded by the Formosa Array, were subjected to cross-correlation analysis to determine the relative arrival time of the S-wave. The findings reveal a relatively faster arrival of the S-wave in northern Taiwan, which can be attributed to the H2 structure as indicated by Su et al. (2019).
關鍵字(中) ★ 南投深震
★ 密度分群法
★ 雙差分定位法
★ 台灣陣列
關鍵字(英) ★ Deep Nantou earthquake
★ DBSCAN
★ HypoDD
★ Formosa Array
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 台灣中部異常深部地震群相關研究 1
1.2.1 地震分布 1
1.2.2 其他地球物理資料與相關解釋 2
1.3 地震發生的機制 3
1.3.1 流變學觀點 3
1.3.2 脆-塑性轉換帶 4
1.3.3 台灣地震分布情形 5
第二章 區域地質背景 23
2.1 區域地體架構 23
2.1.1 弧陸碰撞構造演化 23
2.2 隱沒極性反轉機制 24
2.2.1 撕裂模型 24
2.2.2 斷離模型 25
2.2.3 相關研究 25
2.3 區域三維速度構造模型 26
2.3.1 小結 27
第三章 研究方法與資料處理 49
3.1 研究流程與資料 49
3.2 密度分群法(DBSCAN) 50
3.3 雙差分定位法(HypoDD) 50
3.3.1 Geiger定位法 50
3.3.2 消除速度構造模型的誤差 52
3.3.3 雙差分定位法參數介紹 53
3.4空間幾何分布及機制分析 55
3.4.1 線性迴歸(Linear Regression) 55
3.4.2 決定係數R2 56
3.4.3 Gutenberg–Richter law 57
3.5 台灣陣列(Formosa Array) 58
3.5.1 資料前處理 58
3.5.2 互相關函數(cross correlation function) 58
3.6波線路徑順推 59
3.6.1 有限差分法 59
3.6.2 快速行進法(Fast Marching Method) 60
第四章 研究結果 76
4.1分群結果 76
4.1.1 輪廓係數(Silhouette Coefficient) 76
4.1.2 雜訊比(Noise Ratio) 76
4.2 重新定位結果 77
4.2.1 迭代次數 78
4.2.2 集中度測試 78
4.2.3 殘差分析 78
4.2.4 模型穩定度分析 79
4.2.5 空間幾何分布 80
4.2.6 b值 80
4.2.7 南投地震 81
4.3 台灣陣列及波傳路徑順推結果 81
第五章 討論 108
5.1 異常深部地震群 108
5.1.1 地體構造背景 109
5.1.2 前人相關研究 110
5.1.3 發震機制 111
5.1.4 應力來源 112
5.1.5 地體構造暗示 113
5.2 北台灣底下異常高速帶 114
第六章 結論 127
參考文獻 129
參考文獻 Ahrens, J., Geveci, B., Law, C., Hansen, C., & Johnson, C. (2005). 36-paraview: An end-user tool for large-data visualization. The visualization handbook, 717, 50038-50031.
Ai, S., Zheng, Y., & Xiong, C. (2019). Ambient Noise Tomography Across the Taiwan Strait, Taiwan Island, and Southwestern Ryukyu Arc: Implications for Subsurface Slab Interactions. Tectonics, 38(2), 579-594. https://doi.org/10.1029/2018tc005355
Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530-533. https://doi.org/10.1785/gssrl.81.3.530
Bijwaard, H., Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth, 103(B12), 30055-30078.
Boettcher, M. S., Hirth, G., & Evans, B. (2007). Olivine friction at the base of oceanic seismogenic zones. Journal of Geophysical Research, 112(B1). https://doi.org/10.1029/2006jb004301
Brace, W., & Byerlee, J. (1970). California earthquakes: Why only shallow focus? Science, 168(3939), 1573-1575.
Bureau, C. (2012). Central weather bureau seismographic network. Int. Fed. Digit. Seismogr. Netw.
Byerlee, J. (1978). Friction of rocks. Rock friction and earthquake prediction, 615-626.
Byrne, T., Chan, Y. C., Rau, R. J., Lu, C. Y., Lee, Y. H., & Wang, Y. J. (2011). The Arc–Continent Collision in Taiwan. In Arc-Continent Collision (pp. 213-245). https://doi.org/10.1007/978-3-540-88558-0_8
Camanni, G., Chen, C.-H., Brown, D., Alvarez-Marron, J., Wu, Y.-M., Chen, H.-A., Huang, H.-H., Chu, H.-T., Chen, M.-M., & Chang, C.-H. (2014). Basin inversion in central Taiwan and its importance for seismic hazard. Geology, 42(2), 147-150. https://doi.org/10.1130/g35102.1
Chemenda, A., Yang, R.-K., Stephan, J.-F., Konstantinovskaya, E., & Ivanov, G. (2001). New results from physical modelling of arc–continent collision in Taiwan: evolutionary model. Tectonophysics, 333(1-2), 159-178.
Chen, P.-F., Huang, B.-S., & Liang, W.-T. (2004). Evidence of a slab of subducted lithosphere beneath central Taiwan from seismic waveforms and travel times. Earth and Planetary Science Letters, 229(1-2), 61-71. https://doi.org/10.1016/j.epsl.2004.10.031
Chen, W.-P., & Molnar, P. (1983). Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research: Solid Earth, 88(B5), 4183-4214. https://doi.org/10.1029/JB088iB05p04183
Chen, W.-P., & Yang, Z. (2004). Earthquakes beneath the Himalayas and Tibet: Evidence for strong lithospheric mantle. Science, 304(5679), 1949-1952.
Chen, W.-P., Yu, C.-Q., Tseng, T.-L., Yang, Z., Wang, C.-y., Ning, J., & Leonard, T. (2013). Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics, 609, 491-503. https://doi.org/10.1016/j.tecto.2012.12.019
Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761-9788.
Cloetingh, S., & Burov, E. B. (1996). Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124(3), 695-723.
Czecze, B., & Bondár, I. (2019). Hierarchical cluster analysis and multiple event relocation of seismic event clusters in Hungary between 2000 and 2016. Journal of Seismology, 23(6), 1313-1326. https://doi.org/10.1007/s10950-019-09868-5
Déverchère, J., Houdry, F., Diament, M., Solonenko, N. V., & Solonenko, A. V. (1991). Evidence for a seismogenic upper mantle and lower crust in the Baikal rift. Geophysical Research Letters, 18(6), 1099-1102.
Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B2). https://doi.org/10.1029/JB088iB02p01153
de Hoon, M. J., Imoto, S., Nolan, J., & Miyano, S. (2004). Open source clustering software. Bioinformatics, 20(9), 1453-1454. https://doi.org/10.1093/bioinformatics/bth078
Devlin, S., Isacks, B. L., Pritchard, M. E., Barnhart, W. D., & Lohman, R. B. (2012). Depths and focal mechanisms of crustal earthquakes in the central Andes determined from teleseismic waveform analysis and InSAR. Tectonics, 31(2), n/a-n/a. https://doi.org/10.1029/2011tc002914
Dewey, J. F. (1976). Ophiolite obduction. Tectonophysics, 31(1-2), 93-120.
DiFrancesco, P.-M., Bonneau, D., & Hutchinson, D. J. (2020). The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111885
Dobson, D. P., Meredith, P. G., & Boon, S. A. (2002). Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298(5597), 1407-1410.
Engdahl, E. R., van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722-743.
Evans, B., Fredrich, J. T., & Wong, T. F. (1990). The brittle‐ductile transition in rocks: Recent experimental and theoretical progress. The brittle‐ductile transition in rocks, 56, 1-20.
Fan, J., & Zhao, D. (2021). P‐wave Tomography and Azimuthal Anisotropy of the Manila‐Taiwan‐Southern Ryukyu Region. Tectonics, 40(2). https://doi.org/10.1029/2020tc006262
Goyal, A., & Hung, S. H. (2021). Lateral Variations of Moho Depth and Average Crustal Properties Across the Taiwan Orogen FromH‐VStacking of P and S Receiver Functions. Geochemistry, Geophysics, Geosystems, 22(3). https://doi.org/10.1029/2020gc009527
Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185-188.
Ho, C. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16.
Hsu, S.-K., Liu, C.-S., Shyu, C.-T., Liu, S.-Y., Sibuet, J.-C., Lallemand, S., Wang, C., & Reed, D. (1998). New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation. Terrestrial Atmospheric and Oceanic Sciences, 9(3), 509-532.
Hsu, S.-K., Yeh, Y.-C., Lo, C.-L., Lin, A. T.-S., & Doo, W.-B. (2008). Link between Crustal Magnetization and Earthquakes in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(5). https://doi.org/10.3319/tao.2008.19.5.445(t)
Huang, C.-Y., Yen, Y., Zhao, Q., & Lin, C.-T. (2012). Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57(24), 3130-3149. https://doi.org/10.1007/s11434-012-5349-y
Huang, C.-Y., Yuan, P. B., Lin, C.-W., Wang, T. K., & Chang, C.-P. (2000). Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2), 1-21.
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Kuo-Chen, H., & Lee, S.-J. (2014a). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismicPwave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350-6357. https://doi.org/10.1002/2014gl061115
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014b). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Huang, T.-Y., Gung, Y., Kuo, B.-Y., Chiao, L.-Y., & Chen, Y.-N. (2015). Layered deformation in the Taiwan orogen. Science, 349(6249), 720-723.
Huangfu, P., Wang, Y., Li, Z., Fan, W., & Zhang, Y. (2016). Effects of crustal eclogitization on plate subduction/collision dynamics: Implications for India-Asia collision. Journal of Earth Science, 27, 727-739.
Huchon, P., Barrier, E., de Bremaecker, J.-C., & Angelier, J. (1986). Collision and stress trajectories in Taiwan: a finite element model. Tectonophysics, 125(1-3), 179-191.
Iidaka, T., Mizoue, M., & Suyehiro, K. (1992). Seismic velocity structure of the subducting Pacific Plate in the Izu-Bonin Region. Journal of Geophysical Research, 97(B11). https://doi.org/10.1029/92jb01336
Jackson, J. (2002). Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA today, 12, 4-10.
Jamtveit, B., Ben-Zion, Y., Renard, F., & Austrheim, H. (2018). Earthquake-induced transformation of the lower crust. Nature, 556(7702), 487-491.
Jian, P. R., Tseng, T. L., Liang, W. T., & Huang, P. H. (2018a). A New Automatic Full‐Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan Area. Bulletin of the Seismological Society of America, 108(2), 573-587. https://doi.org/10.1785/0120170231
Jian, P. R., Tseng, T. L., Liang, W. T., & Huang, P. H. (2018b). A New Automatic Full‐Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan AreaA New Automatic Full‐Waveform Regional MT Inversion Algorithm and Its Applications in the Taiwan Area. Bulletin of the Seismological Society of America, 108(2), 573-587.
Jung, H., Green Ii, H. W., & Dobrzhinetskaya, L. F. (2004). Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428(6982), 545-549.
Kennett, B., & Engdahl, E. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465.
Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H., & Shen, P. (2005). Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophysical Journal International, 162(1), 204-220.
Kirby, S., & Kronenberg, A. (1987). Rheology of the lithosphere: Selected topics. Reviews of Geophysics, 25(6), 1219-1244.
Kriegel, H. P., Kröger, P., Sander, J., & Zimek, A. (2011). Density‐based clustering. WIREs Data Mining and Knowledge Discovery, 1(3), 231-240. https://doi.org/10.1002/widm.30
Kun, F., Varga, I., Lennartz-Sassinek, S., & Main, I. G. (2013). Approach to failure in porous granular materials under compression. Physical Review E, 88(6), 062207.
Kuo-Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. Y., & Huang, B. S. (2012a). Seismic evidence for theα-βquartz transition beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39(22), n/a-n/a. https://doi.org/10.1029/2012gl053649
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6), n/a-n/a. https://doi.org/10.1029/2011jb009108
Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012b). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6), n/a-n/a. https://doi.org/10.1029/2011jb009108
Lallemand, S., Font, Y., Bijwaard, H., & Kao, H. (2001). New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335(3-4), 229-253.
Lee, C. R., & Chang, W. T. (1986). Preliminary heat flow mea- surements in Taiwan. In: Circum-Pacific Energy and Mineral Resources. Conference, 4th, Singapore, Proceedings.,
Leech, M. L. (2001). Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, 185(1-2), 149-159.
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. https://doi.org/10.1046/j.1365-2117.2003.00215.x
Lin, C.-H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324(3), 189-201.
Lin, C., & Roecker, S. (1993). Deep earthquakes beneath central Taiwan: Mantle shearing in an arc‐continent collision. Tectonics, 12(3), 745-755.
Lin, C. H. (2002). Active continental subduction and crustal exhumation: The Taiwan orogeny. Terra Nova, 14(4), 281-287.
Lin, J. Y., Hsu, S. K., & Sibuet, J. C. (2004). Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence. Journal of Geophysical Research: Solid Earth, 109(B12).
Liu, Y., Li, C.-F., Qiu, X., & Zhang, J. (2023). Vp/Vs ratios beneath a hyper-extended failed rift support a magma-poor continental margin in the northeastern South China Sea. Tectonophysics, 846, 229652.
Ma, K.-F., & Song, T.-R. A. (2004). Thermo-mechanical structure beneath the young orogenic belt of Taiwan. Tectonophysics, 388(1-4), 21-31. https://doi.org/10.1016/j.tecto.2004.07.003
Maggi, A., Jackson, J., Mckenzie, D., & Priestley, K. (2000). Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28(6), 495-498.
Malavieille, J., Dominguez, S., Lu, C.-Y., Chen, C.-T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158(1), 84-103.
McKenzie, D., Jackson, J., & Priestley, K. (2005). Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4), 337-349. https://doi.org/10.1016/j.epsl.2005.02.005
Mouthereau, F., & Petit, C. (2003). Rheology and strength of the Eurasian continental lithosphere in the foreland of the Taiwan collision belt: Constraints from seismicity, flexure, and structural styles. Journal of Geophysical Research-Solid Earth, 108(B11). https://doi.org/Artn 2512
10.1029/2002jb002098
Ohmi, S., Hirose, I., & Mori, J. J. (2004). Deep low-frequency earthquakes near the downward extension of the seismogenic fault of the 2000 Western Tottori earthquake. Earth, planets and space, 56(12), 1185-1189.
Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1), 43-71.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
Plunder, A., Bandyopadhyay, D., Ganerød, M., Advokaat, E. L., Ghosh, B., Bandopadhyay, P., & Hinsbergen, D. J. J. (2020). History of Subduction Polarity Reversal During Arc‐Continent Collision: Constraints From the Andaman Ophiolite and its Metamorphic Sole. Tectonics, 39(6). https://doi.org/10.1029/2019tc005762
Pysklywec, R. N. (2001). Evolution of subducting mantle lithosphere at a continental plate boundary. Geophysical Research Letters, 28(23), 4399-4402. https://doi.org/10.1029/2001gl013567
Rau, R.-J. (1992). Flexure modeling and Taiwan tectonics State University of New York at Binghamton, Geological Sciences and …].
Rau, R.-J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3-4), 517-532.
Rawlinson, N., Kool, M. d., & Sambridge, M. (2006). Seismic wavefront tracking in 3D heterogeneous media: applications with multiple data classes. Exploration Geophysics, 37(4), 322-330. https://doi.org/10.1071/eg06322
Rivière, J., Lv, Z., Johnson, P., & Marone, C. (2018). Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth and Planetary Science Letters, 482, 407-413.
Roecker, S., Yeh, Y., & Tsai, Y. (1987). Three‐dimensional P and S wave velocity structures beneath Taiwan: Deep structure beneath an arc‐continent collision. Journal of Geophysical Research: Solid Earth, 92(B10), 10547-10570.
Rutter, E., & Brodie, K. (1988). Experimental “sytectonic” dehydration of serpentinite under conditions of controlled pore water pressure. Journal of Geophysical Research: Solid Earth, 93(B5), 4907-4932.
Ryan, P. D. (2001). The role of deep basement during continent-continent collision: A review. Geological Society, London, Special Publications, 184(1), 39-55.
Scholz, C. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399-415.
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37-42.
Scholz, C. H. (2002). SCHOLZ, CH 2002. The Mechanics of Earthquakes and Faulting, xxiv+ 471 pp. Cambridge, New York, Melbourne: Cambridge University Press. Price£ 90.00, US 48.00 (paperback). ISBN 0 521 65223 5; 0 521 65540 4 (pb). Geological Magazine, 140(1), 95-98.
Shelly, D. R., & Hardebeck, J. L. (2010). Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault. Geophysical Research Letters, 37(14), n/a-n/a. https://doi.org/10.1029/2010gl043672
Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research-Solid Earth, 110(B8). https://doi.org/Artn B08402
10.1029/2004jb003251
Sibson, R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. The computer journal, 16(1), 30-34.
Sibuet, J.-C., Yeh, Y.-C., & Lee, C.-S. (2016). Geodynamics of the south China sea. Tectonophysics, 692, 98-119.
Stern, R. J. (2004). Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226(3-4), 275-292.
Stern, R. J., & Gerya, T. (2018). Subduction initiation in nature and models: A review. Tectonophysics, 746, 173-198. https://doi.org/10.1016/j.tecto.2017.10.014
Su, P. L., Chen, P. F., & Wang, C. Y. (2019). High‐Resolution 3‐DPWave Velocity Structures Under NE Taiwan and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 124(11), 11601-11614. https://doi.org/10.1029/2019jb018697
Sun, Z., Lin, J., Qiu, N., Jian, Z., Wang, P., Pang, X., Zheng, J., & Zhu, B. (2019). The role of magmatism in the thinning and breakup of the South China Sea continental margin: Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5), 871-876.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan.
Tarantola, A., & Valette, B. (1982). Inverse problems= quest for information. Journal of geophysics, 50(1), 159-170.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10). https://doi.org/10.1130/0091-7613(1996)024<0949:Ecotnt>2.3.Co;2
Teng, L. S., Lee, C., Tsai, Y., & Hsiao, L.-Y. (2000). Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28(2), 155-158.
Thybo, H., & Artemieva, I. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605-619.
Tian, Z. X., Yan, Y., Huang, C. Y., Zhang, X. C., Liu, H. Q., Yu, M. M., Yao, D., & Dilek, Y. (2019). Geochemistry and Geochronology of the Accreted Mafic Rocks From the Hengchun Peninsula, Southern Taiwan: Origin and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 124(3), 2469-2491. https://doi.org/10.1029/2018jb016562
Tsai, Y.-B. (1986). Seismotectonics of Taiwan. Tectonophysics, 125(1-3), 17-37.
Vernon, R. H. (2004). A Practical Guide to Rock Microstructure. A Practical Guide to Rock Microstructure, 606.
W. Goebel, T., Schorlemmer, D., Becker, T., Dresen, G., & Sammis, C. (2013). Acoustic emissions document stress changes over many seismic cycles in stick‐slip experiments. Geophysical Research Letters, 40(10), 2049-2054.
Waldhauser, F. (2001). hypoDD--A program to compute double-difference hypocenter locations.
Waldhauser, F., & Ellsworth, W. L. (2000). A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90, 1353-1368.
Wang, H.-L., Zhu, L., & Chen, H.-W. (2010b). Moho depth variation in Taiwan from teleseismic receiver functions. Journal of Asian Earth Sciences, 37(3), 286-291. https://doi.org/10.1016/j.jseaes.2009.08.015
Wang, K.-L., O’Reilly, S. Y., Griffin, W. L., Pearson, N. J., & Zhang, M. (2009). Sulfides in mantle peridotites from Penghu Islands, Taiwan: Melt percolation, PGE fractionation, and the lithospheric evolution of the South China block. Geochimica et Cosmochimica Acta, 73(15), 4531-4557.
Wang, K.-L., O’Reilly, S. Y., Honda, M., Matsumoto, T., Griffin, W. L., Pearson, N. J., & Zhang, M. (2010). Co-rich sulfides in mantle peridotites from Penghu Islands, Taiwan: Footprints of Proterozoic mantle plumes under the Cathaysia Block. Journal of Asian Earth Sciences, 37(3), 229-245.
Wang, X., Kaus, B. J. P., Zhao, L., Yang, J., & Li, Y. (2019). Mountain Building in Taiwan: Insights From 3‐D Geodynamic Models. Journal of Geophysical Research: Solid Earth, 124(6), 5924-5950. https://doi.org/10.1029/2018jb017165
Wang, Y.-J., Ma, K.-F., Mouthereau, F., & Eberhart-Phillips, D. (2010a). Three-dimensional Qp-and Qs-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure. Geophysical Journal International, 180(2), 891-910.
Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1-2), 113-131. https://doi.org/10.1016/s0012-821x(03)00289-9
Wilkerson, R. P. (2018). Biomimetic" Nacre-Like", Metal-Compliant-Phase Ceramics Produced via Coextrusion. University of California, Berkeley.
Wu, F. T., Kuo-Chen, H., & McIntosh, K. D. (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 90, 173-208. https://doi.org/10.1016/j.jseaes.2014.03.024
Wu, F. T., Liang, W.-T., Lee, J.-C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research, 114(B7). https://doi.org/10.1029/2008jb005950
Wu, F. T., Rau, R.-J., & Salzberg, D. (1997). Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274(1-3), 191-220.
Wu, W.-N., Yen, Y.-T., Hsu, Y.-J., Wu, Y.-M., Lin, J.-Y., & Hsu, S.-K. (2017). Spatial variation of seismogenic depths of crustal earthquakes in the Taiwan region: Implications for seismic hazard assessment. Tectonophysics, 708, 81-95.
Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth, 112(B8).
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Žalohar, J. (2018). Gutenberg-Richter’s law. In Developments in Structural Geology and Tectonics (Vol. 2, pp. 173-178). Elsevier.
Zheng, H.-W., Gao, R., Li, T.-D., Li, Q.-S., & He, R.-Z. (2013). Collisional tectonics between the Eurasian and Philippine Sea plates from tomography evidences in Southeast China. Tectonophysics, 606, 14-23. https://doi.org/10.1016/j.tecto.2013.03.018 .
陳燕玲、辛在勤 (1998)。 台灣地區三維速度構造。氣象學報, 第42卷第2期,頁 135-169。
詹忠翰(2001)。利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震。國立中央大學地球科學學系碩士論文。
指導教授 陳伯飛(Po-Fei Chen) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明