博碩士論文 110622012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.145.151.141
姓名 張瑋育(Wei-Yu Zhang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用地震與測地資料聯合逆推2022年九月關山地震與池上地震的破裂過程
(The Rupture Process of the September 2022 Guanshan Earthquake and Chishang Earthquake from Joint Inversion of Seismological and Geodetic Dat柏)
相關論文
★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化★ 利用短週期臨時地震觀測網分析菲律賓明多洛島地震分佈
★ 利用接收函數法分析遠震寬頻資料推估宜蘭平原地殼厚度★ 利用噪訊成像反演宜蘭平原上部地殼 三維高解析度S波速度構造
★ 菲律賓民都洛島西北地震地體和上部地函速度構造★ 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性
★ 利用匹配定位法探討 2017 Batangas 地震序列之完整活動度★ 藉由剪力波分離參數探究菲律賓民多洛島之上部地函非均向性
★ 以雙差分定位法重新定位2017 Batangas地震序列★ 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析
★ 台灣東北部地下三維高解析度P波速度構造與其地體構造意涵★ 印度尼西亞蘇拉威西島地震構造
★ 2021南投深部地震的構造意義★ 以二維地震波模擬探討臺灣東北部雙重P波之觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣島位處於歐亞板塊與菲律賓海板塊的聚合邊界,在東部的縱谷區域,作為兩板塊的碰撞縫合帶,成為台灣地震活動最頻繁的區域。在2022年的9月17號和18號,縱谷區域相繼發生兩起強烈地震,芮氏規模分別為6.6(關山地震)和6.8(池上地震)。根據氣象局的地震報告以及餘震分布的結果,我們注意到兩個值得關注的現象: (1) 關山地震與池上地震在時間與空間上存在密切的關聯性。具體來說,這兩起地震事件時間間隔不到24小時;空間上僅相距7公里。(2)餘震分布顯示,關山地震與池上地震可能發生於過去地震活動度相對較低的中央山脈斷層(Bruce et al., 2006)。本研究首先透過聯合逆推多種地球物理資料包括:遠震資料(P波、SH波、 Rayleigh波和Love波) 、強地動資料、靜態GNSS和高取樣率GNSS,以建立關山地震與池上地震有限斷層模型,嘗試了解中央山脈斷層在縱谷中南段的區域破裂特性。依據逆推得到的有限斷層模型,本研究進一步計算了庫倫應力,以檢驗關山地震與池上地震之間是否存在靜態誘發現象。有限斷層的逆推結果顯示,關山地震與池上地震展現不同的破裂特徵。關山地震主要呈現往傾角方向破裂,並具有往淺部區域及南邊延伸的趨勢,最大滑移量近1.9公尺。相較之下,池上地震主要向北方破裂,且滑移主要發生在較靠近地表的區域,其最大滑移量約為5公尺。本研究根據有限斷層逆推的結果,嘗試解釋池上地震在玉里鎮造成的速度脈衝訊號。基於正演模擬的結果,速度脈衝可能是來自兩個不同斷層系統的破裂所致。其中,部分脈衝訊號是由玉里斷層的近斷層破裂方向性效應再加上測站場址效應所產生,另一部分則可能與縱谷斷層的破裂有關。此外,我們以靜力學與動力學兩種不同角度,分別探討關山地震與池上地震之間的交互關係,並得出以下結論: (1)根據庫倫應力的計算結果,關山地震靜態地誘發池上地震的發生。(2)池上地震震源區域的破裂速度低區(1.0至1.5公里/秒) 提供存在障礙體的證據,阻礙了關山地震的破裂前緣往北擴展。
摘要(英) On September 17th and 18th, 2022, two strong earthquakes with moment magnitudes Mw 6.5 (referred to as the Guanshan earthquake) and Mw 7.0 (referred to as the Chishang earthquake) struck the Longitudinal Valley (LV), where the arc-continent collision occurs between the Eurasian plate (EP) and the Philippine Sea plate (PSP) sutures. Two intriguing phenomena were observed from the Central Weather Bureau (CWB) reports and the distribution of their aftershocks.Firstly, the Guanshan earthquake and Chishang earthquake had a close spatial and temporal relationship, occurring only within 24 hours apart and several kilometers away from each other. Secondly, the aftershock distributions suggested that both events ruptured on the west-dipping Central Range Fault (CRF), which is considered to have smaller earthquake production compared to the Longitudinal Valley Fault (Bruce et al., 2006).To understand the rupture behavior of the CRF, we first determined the finite fault models of both events using a joint inversion approach that considered teleseismic waveforms (P, SH, Rayleigh, Love), strong-motion records, static, and high-rate GNSS data. Then, the Coulomb stress change is calculated to examine the triggering effect between the two earthquakes. The results showed that the Guanshan earthquake and Chishang earthquake exhibited different rupture characteristics. The Guanshan earthquake mainly ruptured in the down-dip direction, with a slight extension towards the shallow part and to the south, reaching a maximum slip of approximately 1.9 meters. On the other hand, the Chishang earthquake′s rupture primarily propagated northward and was closer to the surface, with a maximum slip of about 5 meters. Additionally, the interesting observation related to velocity pulse produced by Chishang earthquake is also investigated. Our forward simulation suggested that the velocity pulse observed in Yuli township may have resulted from the rupture of two different fault systems. One could be due to the combination of the near-fault directivity of the Yuli Fault and the amplification effect of shallow low-velocity layers, while the other could be caused by the rupture of the Longitudinal Valley Fault. We also discussed some issues related to the interaction between the Guanshan earthquake and Chishang earthquake, both statically and dynamically. Firstly, based on the inverted finite fault model, the Coulomb stress change increased on the Chishang mainshock, indicating that the Guanshan earthquake statically triggered the subsequent Chishang earthquake. Secondly, the inverted lower rupture velocity (ranging from 1.0 to 1.5 km/s) near the source region of the Chishang earthquake may provide evidence of the existence of a barrier that prevented the Guanshan earthquake from rupturing northward dynamically.
關鍵字(中) ★ 花東縱谷
★ 中央山脈斷層
★ 關山地震
★ 池上地震
★ 有限斷層
★ 聯合逆推
★ 速度脈衝訊號
★ 庫倫應力
★ 障礙體
關鍵字(英) ★ Logitudinal Valley
★ Central Range Fault
★ Guanshan Earthquake
★ Chishang Earthquake
★ Finite Fault
★ Joint Inversion
★ Velocity Pulse
★ Coulomb Stress Change
★ Barrier
論文目次 中文摘要...........................................................................................................................i
Abstract………………………………………………………………………………….ii
誌謝……………………………………………………………………………………..iv
目錄……………………………………………………………………………………...v
圖目錄………………………………………………………………………………….vii
表目錄…………………………………………………………………………………...x
一、緒論 1
1-1研究動機與目的 1
1-2構造背景 4
1-2-1 台灣地體架構 4
1-2-2 花東縱谷 6
1-3文獻回顧 12
1-3-1 震源的表示 12
1-3-2 有限斷層逆推 18
1-3-3 理論格林函數 20
1-3-4 逆推方法 39
二、資料與研究方法 42
2-1 地震資料與測地資料 42
2-2 有限斷層模型建立 47
2-2-1 震源機制解與破裂起始點 47
2-2-2 有限斷層模型幾何設定 47
2-2-3 有限斷層模型參數化 52
2-3 理論格林函數計算 54
2-4 小波域有限斷層逆推 58
2-4-1小波轉換 58
2-4-2 目標函數建立 59
2-4-3 逆推約制條件 62
2-4-4 模擬退火演算法 62
2-5 有限斷層逆推調整 68
2-5-1 逆推資料權重 68
2-5-2 斷層模型幾何 68
2-5-3 波形資料頻率段 69
三、逆推結果 71
3-1 關山地震 71
3-1-1 波形擬合 79
3-1-2 滑移量分布 85
3-1-3 破裂歷史 85
3-2 池上地震 89
3-2-1 波形擬合 99
3-2-2 滑移量分布 105
3-2-3 破裂歷史 105
四、綜合討論與結論 109
4-1聯合逆推的優勢 109
4-2有限斷層模型可信度與解析度分析 118
4-2-1 關山地震 120
4-2-2 池上地震 127
4-3 池上地震速度脈衝訊號 131
4-4 關山地震與池上地震之間的交互關係 140
4-4-1 靜態應力誘發 140
4-4-2 地震動力學上的暗示 145
4-5 有限斷層模型的比較 148
五、結論 153
參考文獻 155
參考文獻 Aki, K., & Richards, P. G. (2002). Quantitative seismology.
Angelier, J., Chu, H.-T., & Lee, J.-C. (1997). Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274(1-3), 117-143.
Baker, J. W. (2007). Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486-1501.
Beroza, G. C., & Spudich, P. (1988). Linearized inversion for fault rupture behavior: Application to the 1984 Morgan Hill, California, earthquake. Journal of Geophysical Research: Solid Earth, 93(B6), 6275-6296.
Biq, C. C. (1965). The eastern Taiwan rift. Petrol. Geol. Taiwan, 4, 93-106.
Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914-2926.
Bock, Y., Melgar, D., & Crowell, B. W. (2011). Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bulletin of the Seismological Society of America, 101(6), 2904-2925.
Bouchon, M. (1981). A simple method to calculate Green′s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959-971.
Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth′s crust. Bulletin of the Seismological Society of America, 95(6), 2081-2092.
Bruce, J., Shyu, H., Sieh, K., Chen, Y.-G., & Chung, L.-H. (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447-1462.
Burridge, R., & Knopoff, L. (1964). Body force equivalents for seismic dislocations. Bulletin of the Seismological Society of America, 54(6A), 1875-1888.
Chen, C.-T., Kuo, C.-H., Lin, C.-M., Huang, J.-Y., & Wen, K.-L. (2022). Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, 297, 106498.
Chen, K. H., Toda, S., & Rau, R. J. (2008). A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien‐Taitung earthquake sequence in eastern Taiwan. Journal of Geophysical Research: Solid Earth, 113(B2).
Chen, Y., & Shin, T. (1998). Study on the earthquake location of 3-D velocity structure in the Taiwan area. Meteorol. Bull, 42(2), 135-169.
Chuang, R. Y., Johnson, K. M., Kuo, Y. T., Wu, Y. M., Chang, C. H., & Kuo, L. C. (2014). Active back thrust in the eastern Taiwan suture revealed by the 2013 Rueisuei earthquake: Evidence for a doubly vergent orogenic wedge? Geophysical Research Letters, 41(10), 3464-3470.
Convertito, V., Pino, N. A., & Piccinini, D. (2021). Concentrated slip and low rupture velocity for the May 20, 2012, Mw 5.8, Po Plain (Northern Italy) earthquake revealed from the analysis of source time functions. Journal of Geophysical Research: Solid Earth, 126(1), e2019JB019154.
Cotton, F., & Campillo, M. (1995). Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 100(B3), 3961-3975.
Cox, K. E., & Ashford, S. A. (2002). 2002. Characterization of large velocity pulses for laboratory testing. Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, USA.
Crespi, J. M., Chan, Y.-C., & Swaim, M. S. (1996). Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247-250.
Das, S., & Henry, C. (2003). Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, 41(3).
Das, S., & Kostrov, B. (1990). Inversion for seismic slip rate history and distribution with stabilizing constraints: Application to the 1986 Andreanof Islands earthquake. Journal of Geophysical Research: Solid Earth, 95(B5), 6899-6913.
De Hoop, A. T. (1958). Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory.
Duputel, Z., Tsai, V. C., Rivera, L., & Kanamori, H. (2013). Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 374, 92-100.
Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1-9.
Fan, W., Shearer, P. M., & Gerstoft, P. (2014). Kinematic earthquake rupture inversion in the frequency domain. Geophysical Journal International, 199(2), 1138-1160.
Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci., 33, 335-367.
Fukuyama, E., & Irikura, K. (1986). Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method. Bulletin of the Seismological Society of America, 76(6), 1623-1640.
Goldberg, D. E., Koch, P., Melgar, D., Riquelme, S., & Yeck, W. L. (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling. Seismological Research Letters, 93(6), 3308-3323. https://doi.org/10.1785/0220220047
Goldberg, D. E., Melgar, D., Sahakian, V., Thomas, A., Xu, X., Crowell, B., & Geng, J. (2020). Complex rupture of an immature fault zone: A simultaneous kinematic model of the 2019 Ridgecrest, CA earthquakes. Geophysical Research Letters, 47(3), e2019GL086382.
Hall, J. F., Heaton, T. H., Halling, M. W., & Wald, D. J. (1995). Near-source ground motion and its effects on flexible buildings. Earthquake spectra, 11(4), 569-605.
Harkrider, D. (1975). Theoretical potentials and displacements for two seismic sources. In: preparation.
Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553-1583.
Hartzell, S. H., & Heaton, T. H. (1986). Rupture history of the 1984 Morgan Hill, California, earthquake from the inversion of strong motion records. Bulletin of the Seismological Society of America, 76(3), 649-674.
Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Vincit Veritas: A Portrait of the Life and Work of Norman Abraham Haskell, 1905–1970, 30, 86-103.
Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64(1), 1-20.
Helmberger, D., & Harkrider, D. (1978). Modeling earthquakes with generalized ray theory. In (pp. 499-518): John Wiley and Sons, New York.
Helmberger, D. V. (1968). The crust-mantle transition in the Bering Sea. Bulletin of the Seismological Society of America, 58(1), 179-214.
Ho, C. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16.
Jackson, D. D., & Matsu′Ura, M. (1985). A Bayesian approach to nonlinear inversion. Journal of Geophysical Research: Solid Earth, 90(B1), 581-591.
Ji, C., Helmberger, D. V., Wald, D. J., & Ma, K.-F. (2003). Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2002jb001764
Ji, C., Wald, D. J., & Helmberger, D. V. (2002a). Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92(4), 1192-1207.
Ji, C., Wald, D. J., & Helmberger, D. V. (2002b). Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history. Bulletin of the Seismological Society of America, 92(4), 1208-1226.
Kennett, B., & Kerry, N. (1979). Seismic waves in a stratified half space. Geophysical Journal International, 57(3), 557-583.
Kikuchi, M., & Fukao, Y. (1985). Iterative deconvolution of complex body waves from great earthquakes—the Tokachi-Oki earthquake of 1968. Physics of the Earth and Planetary Interiors, 37(4), 235-248.
Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491-506.
King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
kmaterna, & Wong, J. (2023). kmaterna/Elastic_stresses_py: v1.0.0 (v1.0.0). https://doi.org/10.5281/zenodo.79751979
Koch, P., Bravo, F., Riquelme, S., & Crempien, J. G. (2019). Near‐real‐time finite‐fault inversions for large earthquakes in Chile using strong‐motion data. Seismological Research Letters, 90(5), 1971-1986.
Kreyszig, E., Kreyszig, H., & Norminton, E. J. (2011). Advanced engineering mathematics.
Kuochen, H., Wu, Y.-M., Chang, C.-H., Hu, J.-C., & Chen, W.-S. (2004). Relocation of eastern Taiwan earthquakes and tectonic implications. Terrestrial(4).
Kuochen, H., Wu, Y.-M., Chen, Y.-G., & Chen, R.-Y. (2007). 2003 Mw6. 8 Chengkung earthquake and its related seismogenic structures. Journal of Asian Earth Sciences, 31(3), 332-339.
Langston, C. A., & Helmberger, D. V. (1975). A procedure for modelling shallow dislocation sources. Geophysical Journal International, 42(1), 117-130.
Laske, G., & Widmer-Schnidrig, R. (2015). Theory and Observations: Normal Mode and Surface Wave Observations. In Treatise on Geophysics (pp. 117-167). https://doi.org/10.1016/b978-0-444-53802-4.00003-8
Lay, T., & Wallace, T. C. (1995). Modern global seismology. Elsevier.
Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C., & Jeng, F.-S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219-240.
Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth, 108(B11).
Lee, S.-J., Huang, H.-H., Shyu, J. B. H., Yeh, T.-Y., & Lin, T.-C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation. Journal of Asian Earth Sciences, 96, 374-385.
Lee, S.-J., Liang, W.-T., Cheng, H.-W., Tu, F.-S., Ma, K.-F., Tsuruoka, H., Kawakatsu, H., Huang, B.-S., & Liu, C.-C. (2014). Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophysical Journal International, 196(1), 432-446.
Lee, S.-J., Liu, T.-Y., & Lin, T.-C. (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence. Scientific Reports, 13(1), 3552.
Lee, S.-J., Ma, K.-F., & Chen, H.-W. (2006a). Effects of fault geometry and slip style on near-fault static displacements caused by the 1999 Chi-Chi, Taiwan earthquake. Earth and Planetary Science Letters, 241(1-2), 336-350.
Lee, S.-J., Ma, K.-F., & Chen, H.-W. (2006b). Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth, 111(B11), n/a-n/a. https://doi.org/10.1029/2005jb004097
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
Li, B., Li, Y., Jiang, W., Su, Z., & Shen, W. (2020). Conjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data. International Journal of Applied Earth Observation and Geoinformation, 90, 102127.
Lin, Y.-Y., Kanamori, H., Zhan, Z., Ma, K.-F., & Yeh, T.-Y. (2020). Modelling of pulse-like velocity ground motion during the 2018 M w 6.3 Hualien earthquake, Taiwan. Geophysical Journal International, 223(1), 348-365.
Liu, C., Lay, T., Brodsky, E. E., Dascher‐Cousineau, K., & Xiong, X. (2019). Coseismic rupture process of the large 2019 Ridgecrest earthquakes from joint inversion of geodetic and seismological observations. Geophysical Research Letters, 46(21), 11820-11829.
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C.-Y., Liu, C.-S., Schnurle, P., & Crew, A. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211.
Matsu′ura, M., & Hasegawa, Y. (1987). A maximum likelihood approach to nonlinear inversion under constraints. Physics of the Earth and Planetary Interiors, 47, 179-187.
Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, 120(5), 3324-3349.
Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise characteristics of operational real‐time high‐rate GNSS positions in a large aperture network. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019197.
Melgar, D., Ganas, A., Geng, J., Liang, C., Fielding, E. J., & Kassaras, I. (2017). Source characteristics of the 2015 Mw6. 5 Lefkada, Greece, strike‐slip earthquake. Journal of Geophysical Research: Solid Earth, 122(3), 2260-2273.
Minson, S., Simons, M., & Beck, J. (2013). Bayesian inversion for finite fault earthquake source models I—Theory and algorithm. Geophysical Journal International, 194(3), 1701-1726.
Minson, S. E., Simons, M., Beck, J., Ortega, F., Jiang, J., Owen, S., Moore, A., Inbal, A., & Sladen, A. (2014). Bayesian inversion for finite fault earthquake source models–II: the 2011 great Tohoku-oki, Japan earthquake. Geophysical Journal International, 198(2), 922-940.
Monelli, D., Mai, P., Jónsson, S., & Giardini, D. (2009). Bayesian imaging of the 2000 Western Tottori (Japan) earthquake through fitting of strong motion and GPS data. Geophysical Journal International, 176(1), 135-150.
Monelli, D., & Mai, P. M. (2008). Bayesian inference of kinematic earthquake rupture parameters through fitting of strong motion data. Geophysical Journal International, 173(1), 220-232.
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040.
Olson, A. H., & Anderson, J. G. (1988). Implications of frequency-domain inversion of earthquake ground motions for resolving the space-time dependence of slip on an extended fault. Geophysical Journal International, 94(3), 443-455.
Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bulletin of the Seismological Society of America, 72(6A), 1969-2001.
Papadopoulos, G., Agalos, A., Charalampakis, M., Kontoes, C., Papoutsis, I., Atzori, S., Svigkas, N., & Triantafyllou, I. (2019). Fault models for the Bodrum–Kos tsunamigenic earthquake (Mw6. 6) of 20 July 2017 in the east Aegean Sea. Journal of Geodynamics, 131, 101646.
Shao, G., Li, X., Ji, C., & Maeda, T. (2011). Focal mechanism and slip history of the 2011 M w 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, Planets and Space, 63(7), 559-564. https://doi.org/10.5047/eps.2011.06.028
Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020). Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal International, 220(2), 1055-1065.
Shyu, H., Sieh, K., Chen, Y.-G., & Chung, L.-H. (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin, 118(11-12), 1447-1462.
Shyu, J., Chen, W. S., & Chen, Y. G. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111(B8).
Shyu, J. B. H., Chung, L.-H., Chen, Y.-G., Lee, J.-C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31(3), 317-331.
Shyu, J. B. H., Wu, Y.-M., Chang, C.-H., & Huang, H.-H. (2011). Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan. Journal of Asian Earth Sciences, 42(3), 415-422.
Sianipar, D., Huang, B.-S., Ma, K.-F., Hsieh, M.-C., Chen, P.-F., & Daryono, D. (2022). Similarities in the rupture process and cascading asperities between neighboring fault patches and seismic implications: The 2002–2009 Sumbawa (Indonesia) earthquakes with moment magnitudes of 6.2–6.6. Journal of Asian Earth Sciences, 229. https://doi.org/10.1016/j.jseaes.2022.105167
Stein, S., & Wysession, M. (2003). An Introduction to Seismology, Earthquakes. Earth Structure.
Takeo, M. (1987). An inversion method to analyze the rupture processes of earthquakes using near-field seismograms. Bulletin of the Seismological Society of America, 77(2), 490-513.
Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2), 219-232.
Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of applied Physics, 21(2), 89-93.
Trifunac, M. (1974). A three-dimensional dislocation model for the San Fernando, California, earthquake of February 9, 1971. Bulletin of the Seismological Society of America, 64(1), 149-172.
Wald, D. J., & Heaton, T. H. (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 84(3), 668-691.
Wald, D. J., Heaton, T. H., & Hudnut, K. W. (1996). The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bulletin of the Seismological Society of America, 86(1B), S49-S70.
Wang, K., Dreger, D. S., Tinti, E., Bürgmann, R., & Taira, T. a. (2020). Rupture process of the 2019 Ridgecrest, California M w 6.4 foreshock and M w 7.1 earthquake constrained by seismic and geodetic data. Bulletin of the Seismological Society of America, 110(4), 1603-1626.
Wang, Y.-J., Ma, K.-F., Mouthereau, F., & Eberhart-Phillips, D. (2010). Three-dimensional Qp-and Qs-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure. Geophysical Journal International, 180(2), 891-910.
Wang, Z., Kato, T., Zhou, X., & Fukuda, J. i. (2016). Source process with heterogeneous rupture velocity for the 2011 Tohoku-Oki earthquake based on 1-Hz GPS data. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0572-4
Wen, Y.-Y., Wen, S., Lee, Y.-H., & Ching, K.-E. (2019). The kinematic source analysis for 2018 Mw 6.4 Hualien, Taiwan earthquake. Terr. Atmos. Ocean. Sci., 30, 377-387.
Wetzler, N., Lay, T., Brodsky, E. E., & Kanamori, H. (2018). Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes. Science advances, 4(2), eaao3225.
Willett, S., Beaumont, C., & Fullsack, P. (1993). Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21(4), 371-374.
Willett, S. D., Fisher, D., Fuller, C., En-Chao, Y., & Chia-Yu, L. (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.
Wu, Y. M., Chen, Y. G., Chang, C. H., Chung, L. H., Teng, T. L., Wu, F. T., & Wu, C. F. (2006). Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6. 1 Taitung earthquake. Geophysical Research Letters, 33(22).
Yagi, Y., Okuwaki, R., Enescu, B., & Lu, J. (2023). Irregular rupture process of the 2022 Taitung, Taiwan, earthquake sequence. Scientific Reports, 13(1), 1107.
Yan, Z., Xiong, X., Liu, C., & Xu, J. (2022a). Integrated Analysis of the 2020 M w 7.4 La Crucecita, Oaxaca, Mexico, Earthquake from Joint Inversion of Geodetic and Seismic Observations. Bulletin of the Seismological Society of America, 112(3), 1271-1283.
Yan, Z., Xiong, X., Liu, C., & Xu, J. (2022b). Integrated Analysis of the 2020 Mw 7.4 La Crucecita, Oaxaca, Mexico, Earthquake from Joint Inversion of Geodetic and Seismic Observations. Bulletin of the Seismological Society of America, 112(3), 1271-1283. https://doi.org/10.1785/0120210276
Yang, H.-Y., Zhao, L., & Hung, S.-H. (2010). Synthetic seismograms by normal-mode summation: a new derivation and numerical examples. Geophysical Journal International, 183(3), 1613-1632.
Yao, Z. X., & Harkrider, D. (1983). A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bulletin of the Seismological Society of America, 73(6A), 1685-1699.
Yomogida, K. (1994). Detection of anomalous seismic phases by the wavelet transform. Geophysical Journal International, 116(1), 119-130.
YOSHIDA, S. (1986). A method of waveform inversion for earthquake rupture process. Journal of Physics of the Earth, 34(3), 235-255.
Yu, S.-B. (1989). Fault creep on the central segment of the Longitudinal Valley fault, eastern Taiwan. Proc. Geol. Soc. China,
Yu, S.-B., Chen, H.-Y., & Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Yu, S.-B., & Kuo, L.-C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217.
Yuan, J., Wang, J., & Zhu, S. (2020). Effects of barriers on fault rupture process and strong ground motion based on various friction laws. Applied Sciences, 10(5), 1687.
Zeng, Y., & Anderson, J. G. (1996). A composite source model of the 1994 Northridge earthquake using genetic algorithms. Bulletin of the Seismological Society of America, 86(1B), S71-S83.
ZHANG, X., HAO, J., GAO, X., & WANG, W. (2020). Evaluation of investigating magnitude, source mechanism and rupture process based on restored seismic data——Taking the 2013 Lushan M W 6.6 earthquake in Sichuan as an example. Chinese Journal of Geophysics, 63(6), 2262-2273.
Zheng, X., Zhang, Y., Wang, R., Zhao, L., Li, W., & Huang, Q. (2020). Automatic inversions of strong‐motion records for finite‐fault models of significant earthquakes in and around Japan. Journal of Geophysical Research: Solid Earth, 125(9), e2020JB019992.
Zhou, X., Xie, Y., Bi, J., & Berto, F. (2019). Numerical simulation of supershear ruptures in rock mass based on general particle dynamics. Fatigue & Fracture of Engineering Materials & Structures, 42(4), 905-918.
Zhu, L. (2011). Synthetic Seismograms and Seismic Waveform Modeling. In: Saint Louis University.
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619-627.
中央地質調查所. (2022). 20220917關山地震與20220918池上地震地質調查報告.
刘鹏程, & 纪晨. (1995). 改进的模拟退火-单纯形综合反演方法. 地球物理学报, 38(2), 199-205.
何玉梅, & 郑天愉. (1998). 利用地震波形反演研究震源破裂时空过程. 地球物理学报, 41(2), 281-289.
姚振兴, & 纪晨. (1997). 时间域内有限地震断层的反演问题. 地球物理学报, 40(5), 691-701.
姚振兴, & 郑天愉. (1984). 计算综合地震图的广义反射, 透射系数矩阵和离散波数方法 (二)——对不同深度点源的算法. 地球物理学报, 27(4), 338-348.
徐鐵良. (1956). 臺灣東部海岸山脈地質. 臺灣省地質調查所彙刊, 八號, 15-41.
栾威, 申文斌, & 丁浩. (2021). 地球自由振荡弹性简正模研究进展与展望. 地球与行星物理论评, 52(3), 308-325.
國家地震工程研究中心. (2022). 台東地震初始災損報告 (第二版).
陳文山, 吳逸民, 葉柏逸, 賴奕修, 柯明淳, 柯孝勳, & 林義凱. (2018). 臺灣東部碰撞帶孕震構造. 經濟部中央地質調查所特刊, 第33號, 33, 123-155.
陳文山, 林益正, 顏一勤, 楊志成, 紀權窅, 黃能偉, 林啟文, 林偉雄, 侯進雄, 劉彥求, 林燕慧, 石同生, & 盧詩丁. (2008). 從古地震研究與GPS資料探討縱谷斷層的分段意義. 從古地震研究與GPS資料探討縱谷斷層的分段意義, 第20號, 165-191.
谢小碧, & 姚振兴. (1989). 计算分层介质中位错点源静态位移场的广义反射, 透射系数矩阵和离散波数方法. 地球物理学报, 32(3), 270-280.
謝小碧, 鄭天愉, & 姚振興. (1992). 理論地震圖計算方法. 地球物理學報(06).
指導教授 陳伯飛(Po-Fei Chen) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明