博碩士論文 110622011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.188.108.54
姓名 張閔瑄(Min-Hsuan Chang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 經驗格林函數法及應變格林張量法模擬台灣中大型地震波形可行性評估
(Assessment of Empirical and Physics-based Waveform Simulations for Moderate-to-large (M6+) Earthquake Scenarios in Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地震預警系統已經被廣泛地使用以減少傷亡以及經濟財產損失。中央氣象局目前利用區域型地震預警系統,對台灣發布地震預警資訊,島內地震預警時間為10秒,而島外地震為18秒。為了提高系統效率,大數據機器學習結合台灣密集的觀測資料有機會縮短預警時間,直接預測震度分布而無需計算地震事件的規模和位置,並減少盲區的範圍。然而,台灣地區中大型地震(M6+)資料的稀缺,將會使得機器學習模型訓練時產生偏差導致不穩定的預估。為了填補波形之不足,本研究將評估利用經驗格林函數(Empirical Green’s Function, EGF)法以及應變格林張量(Strain Green’s Tensor, SGT)法,用於模擬台灣中大型地震之波形的可行性。在EGF方法中,我們嘗試將小規模地震(M3~5+)波形,利用地震學原理放大為大規模地震(M6+)波形。此方法中,地震波之路徑項及場址項均包含於小規模地震波形。另一方面,基於物理的SGT方法可以對於台灣地區的特徵地震進行情境模擬,包含設定特定破裂尺寸、破裂速度、破裂方向、震源機制等震源參數,以及考慮三維速度構造模型與場址效應,適用於模擬規模更大之地震(M6~7+)波形。本文選擇了台灣三個M6+地震事件,即2013年南投、2016年美濃和2019年花蓮地震,驗證這兩種方法。EGF結果指出,在0.2~1 Hz頻段下,花蓮及南投地震的模擬震度可以與觀測震度良好符合,美濃地震的結果則顯示較高的震度殘差,這是由於EGF地震之震源沒有像美濃地震那樣強烈的破裂方向性,另外,可模擬合成波形之測站範圍會受限於記錄EGF地震波形之測站。而SGT結果顯示合成波形之振幅顯著受到速度模型偏差與淺層場址效應之影響,透過這兩項因素之修正,花蓮及南投地震的模擬震度可以在0.2~1 Hz頻段良好符合觀測震度,美濃地震則顯示真實的觀測震度分布較模擬震度更為複雜。本研究結果表明,EGF法與SGT法皆可以提供M6+合成地震波形,以填補台灣地震資料庫的不足,並增加機器學習之訓練資料,對於傳統地震動預估式之迴歸分析、地震工程等相關研究也有所助益。
摘要(英) Earthquake early warning systems have been used to mitigate injuries and damage worldwide for many years. In Taiwan, the Central Weather Bureau (CWB) has operated a regional type system to issue warnings to public. The inland and offshore warning times are about 10 and 18 seconds, respectively. In order to improve the efficiency of the system, more and more studies account for that machine learning approaches could predict the intensity distribution without calculating the magnitude and location of the event. However, lack of seismic records for moderate-large (M6+) earthquakes may give unstable extrapolations while predicting intensities. To fill the lack, we demonstrate two approaches, the empirical Green′s function (EGF) and the strain Green′s tensor (SGT), in seismic waveform simulations for moderate-large earthquake scenarios in Taiwan. In the EGF approach, the waveforms of scenario M6+ events are simulated by the observed waveforms of M3~5+ events, which contain the path and site effects. On the other hand, the SGT approach allows us to perform synthetics of larger event (M6~7+) scenarios physically, considering potential source mechanisms (e.g., dimension, rupture speed, directivity, focal mechanism) and structures (e.g., 3-D velocity structure and site response). Here, three M6+ events in Taiwan, the 2013 Nantou, the 2016 Meinong, and the 2019 Hualien earthquakes, are selected to validate these two approaches. In the EGF approach, the intensities from the synthetic waveforms are similar to those from the observations in the frequency range of 0.2~1 Hz for the Hualien and the Nantou events. However, higher intensity residuals appear for the Meinong earthquake. It may be due to that source of the EGF events does not have such strong directivity as the Meinong earthquake. Besides, the spatial distribution of simulations will be restricted by the number of on-site observations of EGF events. As for the SGT approach, after correcting the velocity model bias and site effect, the synthetic waveforms could show good intensity simulations for the Hualien and the Nantou events in the same frequency range, while the actual distribution of strong motion for the Meinong event is more complex than the simulation result. Overall, our results suggest that both approaches could fill the lack of seismic records for moderate-large earthquakes. These synthetic data have the potential to improve the machine learning in early warning systems, and can further be utilized to refine the existing ground motion prediction equation as well as applied to earthquake engineering research.
關鍵字(中) ★ 地震波模擬
★ 經驗格林函數
★ 應變格林張量
★ 地震預警
關鍵字(英) ★ Seismic waveform simulation
★ Empirical Green′s function
★ Strain Green′s tensor
★ Earthquake early warning
論文目次 摘要----i
Abstract----ii
誌謝----iii
目錄----iv
圖目錄----vi
表目錄----x
第一章 緒論----1
1-1 研究動機與目的----1
1-2 中央氣象局現行地震預警系統發布流程----3
1-3 本文範疇與內容----5
第二章 研究資料與方法----11
2-1 研究資料----11
2-2 經驗格林函數法模擬M6+地震波形----12
2-3 應變格林張量法模擬M6+地震波形----16
第三章 研究結果----36
3-1 EGF法----36
3-2 SGT法----40
第四章 討論----78
4-1 EGF法結果分析----78
4-2 SGT法結果分析及場址、速度模型之影響----83
4-3 兩種方法之結果統整----86
第五章 結論----109
參考文獻----111
附錄A GMPE預估震度----117
附錄B EGF合成波形與觀測波形----122
附錄C SGT合成波形與觀測波形----141
參考文獻 Abercrombie, R. E. (2014). Stress drops of repeating earthquakes on the San Andreas fault at Parkfield. Geophysical Research Letters, 41(24), 8784-8791.
Aki, K., & Richards, P. G. (2002). Quantitative seismology, 2nd ed., 700 pp., University Science Books.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the seismological society of America, 68(5), 1521-1532.
Allen, R. M., Gasparini, P., Kamigaichi, O., & Bose, M. (2009). The status of earthquake early warning around the world: An introductory overview. Seismological Research Letters, 80(5), 682-693.
Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114(B1).
Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24.
Ammon, C. J., Velasco, A. A., & Lay, T. (1993). Rapid estimation of rupture directivity: Application to the 1992 Landers (MS= 7.4) and Cape Mendocino (MS= 7.2), California earthquakes. Geophysical research letters, 20(2), 97-100.
Aster, R. C., Borchers, B., & Thurber, C. H. (2018). Parameter estimation and inverse problems. Elsevier.
Chen, D. Y., Wu, Y. M., & Chin, T. L. (2017). An empirical evolutionary magnitude estimation for early warning of earthquakes. Journal of Asian Earth Sciences, 135, 190-197.
Chen, D. Y., Lin, T. L., Hsu, H. C., Hsu, Y. C., & Hsiao, N. C. (2019). An approach to improve the performance of the earthquake early warning system for the 2018 Hualien earthquake in Taiwan. Terr. Atmos. Ocean. Sci, 30, 423-433.
Duputel, Z., Tsai, V. C., Rivera, L., & Kanamori, H. (2013). Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 374, 92-100.
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 241(1226), 376-396.
Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only, St. Louis Univ. Bull. 8, 60–71.
Graves, R., Jordan, T. H., Callaghan, S., Deelman, E., Field, E., Juve, G., Kesselman, C., Maechling, P., Mehta, G., Milner, K., Okaya, D., Small, P., & Vahi, K. (2011). CyberShake: A physics-based seismic hazard model for southern California. Pure and Applied Geophysics, 168, 367-381.
Hartzell, S. H. (1978). Earthquake aftershocks as Green′s functions. Geophysical Research Letters, 5(1), 1-4.
Hsiao, N. C. (2006). The application of real-time strong motion observations on the earthquake early warning in Taiwan. Ph.D. Thesis, National Central University, Taoyuan City, Taiwan, ROC, 178 pp.
Hsieh, M. C., Zhao, L., & Ma, K. F. (2014). Efficient waveform inversion for average earthquake rupture in three-dimensional structures. Geophysical Journal International, 198(3), 1279-1292.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Huang, M. W., Wang, J. H., Ma, K. F., Wang, C. Y., Hung, J. H., & Wen, K. L. (2007). Frequency-dependent site amplifications with f ≥ 0.01 Hz evaluated from velocity and density models in central Taiwan. Bulletin of the Seismological Society of America, 97(2), 624-637.
Ide, S., Beroza, G. C., Prejean, S. G., & Ellsworth, W. L. (2003). Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. Journal of Geophysical Research: Solid Earth, 108(B5).
Institute of Earth Sciences, Academia Sinica, Taiwan (n.d.): AutoBATS CMT Catalog. Retrieved 2021, from https://tecdc.earth.sinica.edu.tw/FM/AutoBATS/.
Irikura, K. (1986). Prediction of strong acceleration motion using empirical Green’s function. In Proc. 7th Japan Earthq. Eng. Symp, 151, 151-156.
Irikura, K., & Miyake, H. (2011). Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 168, 85-104.
Jian, P. R., Tseng, T. L., Liang, W. T., & Huang, P. H. (2018). A new automatic full‐waveform regional moment tensor inversion algorithm and its applications in the Taiwan area. Bulletin of the Seismological Society of America, 108(2), 573-587.
Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the seismological society of America, 65(5), 1073-1095.
Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Reports on progress in physics, 67(8), 1429.
Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H., & Shen, P. (2005). Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophysical Journal International, 162(1), 204-220.
Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6).
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Lay, T., & Wallace, T. C. (1995). Modern global seismology. Elsevier.
Lee, S. J., Yeh, T. Y., Huang, H. H., & Lin, C. H. (2015). Numerical earthquake models of the 2013 Nantou, Taiwan, earthquake series: Characteristics of source rupture processes, strong ground motions and their tectonic implication. Journal of Asian Earth Sciences, 111, 365-372.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
Lee, S. J., Wong, T. P., Liu, T. Y., Lin, T. C., & Chen, C. T. (2020). Strong ground motion over a large area in northern Taiwan caused by the northward rupture directivity of the 2019 Hualien earthquake. Journal of Asian Earth Sciences, 192, 104095.
Lin, Y. Y., Ma, K. F., & Oye, V. (2012). Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers. Geophysical Journal International, 190(1), 665-676.
Lin, Y. Y., Wen, Y. Y., & Yen, Y. T. (2022). Source properties of the 2019 M L6. 3 Hualien, Taiwan, earthquake, determined by the local strong motion networks. Geophysical Journal International, 229(3), 1665-1679.
Miyake, H., Iwata, T., & Irikura, K. (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bulletin of the Seismological Society of America, 93(6), 2531-2545.
Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(6607), eabm4470.
Mueller, C. S. (1985). Source pulse enhancement by deconvolution of an empirical Green′s function. Geophysical Research Letters, 12(1), 33-36.
Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). The transformer earthquake alerting model: A new versatile approach to earthquake early warning. Geophysical Journal International, 225(1), 646-656.
Rau, R. J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3-4), 517-532.
Wen, Y. Y., Miyake, H., Yen, Y. T., Irikura, K., & Ching, K. E. (2014). Rupture directivity effect and stress heterogeneity of the 2013 Nantou blind‐thrust earthquakes, Taiwan. Bulletin of the Seismological Society of America, 104(6), 2933-2942.
Wen, Y. Y., Chao, S. Y., Yen, Y. T., & Wen, S. (2017). Source characteristics of moderate-to-strong earthquakes in the Nantou area, Taiwan: insight from strong ground motion simulations. Earth, Planets and Space, 69(1), 1-9.
Wen, Y. Y., Yen, Y. T., Kuo, C. H., & Ching, K. E. (2020). Source and strong-motion characteristics of two M> 6 buried earthquakes in southwest Taiwan. Earth, Planets and Space, 72, 1-14.
Wu, Y. M., Shyu, J. B. H., Chang, C. H., Zhao, L., Nakamura, M., & Hsu, S. K. (2009). Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2), 1042-1054.
Zhang, W., & Chen, X. F. (2006). Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophysical Journal International, 167(1), 337-353.
Zhang, W., Zhang, Z., & Chen, X. (2012). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophysical Journal International, 190(1), 358-378.
Zhao, L., Chen, P., & Jordan, T. H. (2006). Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies. Bulletin of the Seismological Society of America, 96(5), 1753-1763.
馬國鳳、郭陳澔、莊永裕、卓穆蓼:《人工智慧技術建立微分區地震預警系統相關研究-大數據機器學習進行現地預警分析有效減少盲區》,交通部中央氣象局110年委託研究計畫成果報告(MOTC-CWB-110-E-06),2021。
李憲忠、黃信樺、梁文宗、林哲民、溫士忠、劉廷佑、陳俊德:《台灣速度模型:建立、驗證、查詢與應用-台灣速度模型之驗證》,科技部補助專題研究計畫報告,2021。
郭俊翔、林哲民、章順強、溫國樑、謝宏灝:《台灣強震測站場址資料庫》,國家地震工程研究中心,NCREE-17-004,共80頁,2017。
國家地震工程研究中心:《2013年0602 南投地震事件勘災報告》,國家地震工程研究中心,NCREE-13-025,共186頁,2013。
國家地震工程研究中心:《近斷層脈衝歷時資料庫》,國家地震工程研究中心,NCREE-19-010,共186頁,2019。
饒瑞鈞等編著:《2016年高雄美濃地震-震後科學調查》,台灣地震科學中心,2017。
葉芳耀,吳俊霖、陳昱志主編:《專題報導:0206高雄美濃地震事件勘災紀要》,國家地震工程研究中心簡訊,第97期,2016。
指導教授 林彥宇 謝銘哲 顏宏元(Yen-Yu Lin Ming-Che Hsieh Horng-Yuan Yen) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明