參考文獻 |
[1] 衛生福利部統計處,2023,「2.3.3身心障礙者人數按等級及類別分」。
[2] 曾佳馨,2021,「以ASTM WPRI與垂直加速度建構檢測設備與評估人行環境舒適性之初步研究」,碩士論文,國立中央大學。
[3] 交通部,2023,「道路交通管理處罰條例」。
[4] 內政部國土管理署,2022,「市區道路及附屬工程設計規範」。
[5] ISO 2631-1, (2010). “Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 1: General requirements. Standard – amendment 1, No. 2631-1/AMD 1:2010,” International Organization for Standardization.
[6] ASTM E3028-23. (2023). “Standard Practice for Computing Wheelchair Pathway Roughness Index as Related to Comfort, Passability, and Whole Body Vibrations from Longitudinal Profile Measurements. Standard”, American Society for Testing and Materials.
[7] ASTM E303-22. (2022). “Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester”, American Society for Testing and Materials.
[8] 「CNS 16106人行面磚防滑性試驗法-濕式擺錘法」,2019,經濟部標準檢驗局。
[9] 交通部,2021,「交通工程規範」。
[11] KS F 2530:2018, (2018). “Standard specifications for stone block foe pavement”, Korean Standards Association (KSA).
[11] Jing, W., Shiying S., and Xiaoquang, Z., (2015). “SUnstructured road detection and path tracking for tracked mobile robot,” The 5th Annual IEEE International Conference on Cyber Technology in Automation, China.
[12] Timothy, M., Daniel, S., Laith, T., Nader, T., and Hussain, U.B., (2012) “Characterization of Asphalt Pavement Surface Texture,” Transportation Research Record: Journal of the Transportation Research Board, No. 2295, Transportation Research Board of the National Academies, Washington, D.C., 2012, pp. 19–26.
[13] Duvall, J. (2013). “Development of Surface Roughness Standard for Wheelchair Pathways,” University of Pittsburgh, U.S.A.
[14] ASTM E1927. (2018). “Standard Guide for Conducting Subjective Pavement Ride Quality Ratings.”, American Society for Testing and Materials.
[15] Sinagra, E.J. (2014). “The design, development, characterization, and validation of a pathway measurement tool,” Duquesne University, U.S.A.
[16] Duvall, J., Sinagra, E., Cooper, R., and Pearlman, J. (2016). “Proposed Pedestrian Pathway Roughness Thresholds to Ensure Safety and Comfort for Wheelchair Users,” The Official Journal of RESNA, RESNA, Vol. 28, No. 4, pp. 209–215.
[17] Timothy, M., Daniel, S., Laith, T., Nader, T., and Hussain, U.B., (2012) “Characterization of Asphalt Pavement Surface Texture,” Transportation Research Record: Journal of the Transportation Research Board, No. 2295, Transportation Research Board of the National Academies, Washington, D.C., 2012, pp. 19–26.
[18] Duvall, J. (2013). “Development of Surface Roughness Standard for Wheelchair Pathways,” University of Pittsburgh, U.S.A.
[19] 尹赫,(2017),“Evaluation of Wheelchair Pathway Serviceability in Taiwan”,碩士論文,國立台灣大學。
[20] Sinagra, E.J. (2014). “The design, development, characterization, and validation of a pathway measurement tool,” Duquesne University, U.S.A.
[21] Michael W. Sayers, and Steven M. Karamihas, (1998) “The little book of profiling: basic information about measuring and interpreting road profiles”, University of Michigan
[22] Ueckermann, A., Wang, D., Oeser, M., & Steinauer, B. (2015). A contribution to non-contact skid resistance measurement. International Journal of Pavement Engineering, 16(7), 646-659.
[23] Michael W. Sayers, and Steven M. Karamihas, (1998) “The little book of profiling: basic information about measuring and interpreting road profiles”, University of Michigan
[24] Ueckermann, A., Wang, D., Oeser, M., & Steinauer, B. (2015). A contribution to non-contact skid resistance measurement. International Journal of Pavement Engineering, 16(7), 646-659.
[25] Zhan, Y., Liu, C., Deng, Q., Feng, Q., Qiu, Y., Zhang, A., & He, X. (2022). Integrated FFT and XGBoost framework to predict pavement skid resistance using automatic 3D texture measurement. Measurement, 188, 110638.
[26] Zhu, X., Yang, Y., Zhao, H., Jelagin, D., Chen, F., Gilabert, F. A., & Guarin, A. (2021). Effects of surface texture deterioration and wet surface conditions on asphalt runway skid resistance. Tribology International, 153, 106589.
[27] Serigos, Pedro A., Andre De Fortier Smit, and Jorge A. Prozzi., (2014), "Incorporating surface microtexture in the prediction of skid resistance of flexible pavements.", Transportation Research Record 2457.1: 105-113.
[28] Kane, M. (2022). Determining the Prominence of Texture Scales on Road Skid Resistance. In Proceedings of the RILEM International Symposium on Bituminous Materials: ISBM Lyon 2020 1 (pp. 553-558). Springer International Publishing.
[29] Can Chen, Haoyuan Luo, Siyu Chen, Yangzezhi Zheng, Xiyin Liu, Tao Ma, Leyi Zhu. (2023). “Exploring the relationship between pavement surface texture and friction based on Hilbert-Huang Transformation.“, Tribology International, 187, 108737.
[30] Yuan-shuai Dong, Yun Hou, Jia-lei Tian, Yu-xuan Cao, Chen-wei Guo, Tuo Fang, and Jing Zhou. (2021). “Hilbert-Huang Transform in Pavement Texture and Skid-Resistance Study.”, In International Conference on Green Intelligent Transportation System and Safety (pp. 341-353). Singapore: Springer Nature Singapore.
[31] WENYING YU., (2019), “Characterizing Pavement Skid Resistance for Roadway Crash Prediction in Oklahoma”, Doctoral dissertation, Oklahoma State University.
[32] Miao Yu1, Yao Kong, Chuanhai Wu, Xinquan Xu, Shanqiang Li, Haifeng Chen, Lingyun Kong. (2021), “The effect of pavement texture on the performance of skid resistance of asphalt pavement based on the Hilbert-Huang transform.”, Arabian Journal for Science and Engineering, 46, 11459-11470.
[33] Nicolas Gagarin, Norden E. Huang, Morton S. Oskard, Dennis G. Sixbey, James R. Mekemson, (2004), “The application of the Hilbert-Huang transform to the analysis of inertial profiles of pavements.”, International journal of vehicle design, 36(2-3), 287-301.
[34] Candida Ferreira, “Gene Expression Programming Mathematical Modeling by an Artificial Intelligence 2nd ed. Springer, 2006.
[35] Jun Liu, Kezhen Yan, Lingyun You, Pei Liu & Kezhen Yan., (2017), "Prediction models of mixtures′ dynamic modulus using gene expression programming." International Journal of Pavement Engineering, 18(11), 971–980.
[36] Mehran Mazari, Daniel D. Rodriguez, (2016), "Prediction of pavement roughness using a hybrid gene expression programming-neural network technique", Journal of Traffic and Transportation Engineering,3 (5): 448–455.
[37] Ashwini R. Tenpe and Anjan Patel, (2018), "Application of genetic expression programming and artificial neural network for prediction of CBR". Road Materials and Pavement Design, v.19(1), pp.1–18,.
[38] Kaffayatullah Khan, Babatunde Abiodun Salami, Arshad Jamal, Muhammad Nasir Amin, Muhammad Usman, Majdi Adel Al-Faiad, Abdullah M. Abu-Arab and Mudassir Iqbal, (2022), “Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model.”, Materials, 15.17: 5823.
[39] Rana Imam, Yasmin Murad, Ibrahim Asi, Anis Shatnawi, (2021)ㄝ"Predicting pavement condition index from international roughness index using gene expression programming. "Innovative Infrastructure Solutions, 6: 1-12.
[40] Linyi Yao, Zhen Leng, Jiwang Jiang, Fujian Ni, Zili Zhao, (2021) "Nondestructive prediction of rutting resistance of in-service middle asphalt layer based on gene expression programming." Construction and Building Materials, 293: 123481.
[41] C.D. Lewis, Industrial and business forecasting methods, Butterworth- Scientific, 1982.
[42] Shih-Huang Chen, Cheng-Kai Huang, Dita Adelafani, Yi-Yang Cheng, (2023). The preliminary study of the forecasting model between surface texture and various material parameters for the ISO 10844 test track. Case Studies in Construction Materials, 19, e02523.
[43] D. Kong and W. Xy, ‘‘Vehicle target identification algorithm based on poin cloud of vehicle 32-line laser lidar,’’ Sci. Technol. Eng., vol. 18, no. 5, pp. 81–85, May 2018.
[44] X. Z. Wang, J. Li, H. J. Li, and B. X. Shang, ‘‘Obstacle detection based on 3D laser scanner and range image for intelligent vehicle,’’ J. Jilin Univ. (Eng. Technol. Ed.), vol. 46, no. 2, pp. 360–365, Apr. 2016.
[45] S. I. R. Rodríguez and F. de Assis Tenorio de Carvalho, ‘‘Fuzzy clustering algorithm based on adaptive Euclidean distance and entropy regularization for interval-valued data,’’ presented at the Artif. Neural Netw. Mach. Learn., Oct. 2018.
[46] L. Bai, L. Yan, and Z. M. Ma, ‘‘Determining topological relationship of fuzzy spatiotemporal data integrated with XML twig pattern,’’ Appl. Intell., vol. 39, no. 1, pp. 75–100, 2013.
[47] D. H. Zhu, ‘‘Euclidean cluster extraction in PCL,’’ in Point Cloud Library PCL Study Tutorial, 2th ed. Beijing, China: Univ. Aeronautics and Astronautics Press, 2012, pp. 338–350.
[48] H. Rashmanlou, S. Sahoo, R. A. Borzooei, M. Pal, and A. Lakdashti, ‘‘Computation of shortest path in a vague network by Euclidean distance,’’ J. Multiple-Valued Logic Soft Comput., vol. 30, no. 1, pp. 115–123, 2018.
[49] ISO 13473-3, (2002). “Characterization of pavement texture by use of surface profiles — Part 3: Specification and classification of profilometers”, International Organization for Standardization.
[50] 「CNS 15046慣性剖面儀量測舖面縱向剖面試驗法」,2006,經濟部標準檢驗局。
[51] 「CNS 15371鋪面量測用慣性剖面儀驗證法」,2010,經濟部標準檢驗局。
[52] ISO 13473-1, (2019), “Characterization of pavement texture by use of surface profiles Part 1: Determination of mean profile depth”, International Organization for Standardization.
[53] ASTM E178-21, (2021) “Standard Practice for Dealing With Outlying Observations”, American Society for Testing and Materials.
[54] 內政部國土管理署,「112年度市區道路養護管理暨人行環境無障礙考評計畫評鑑報告(附錄E街廓考評範圍說明)」,社團法人鋪面工程學會。
[55] 郭欽培. (1995). 無障礙設計之建築觀: 從殘障者的特性與需求談起. 詹氏。
[56] 黃振愷,2018,「臺灣六都市區道路平坦度分析與 改善策略建議之研究」,碩士論文,國立中央大學
[57] ISO 2631-5:2018, (2018), “Mechanical vibration and shock Evaluation of human exposure to whole-body vibration Part 5: Method for evaluation of vibration containing multiple shocks”, International Organization for Standardization. |