博碩士論文 109622009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.146.221.204
姓名 王芸㚬(Yun-Chun Wang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 從太麻里地區窺視台灣造山帶於陸弧碰撞前之 熱變質與構造演化模式
(Tectonic evolution of southern Taiwan slate belt insights from thermal metamorphic constraints)
相關論文
★ 青藏高原東緣區域之熱變質紀錄與構造演化探討★ 以熱變質度解析台灣中部雪山-脊梁板岩帶邊界構造運動模式
★ 越南西北部變質沉積岩熱歷史初探,與對印支造山運動演化的隱示★ 地貌分析揭示的越南中北部活動斷層
★ 越南西北部變質沉積岩熱變質紀錄,及其大地構造意涵初探★ 台灣海岸山脈最南端利吉混同層構造演化
★ 台灣造山帶板岩區的熱變質演化─以紅香到武界為例★ 應用光達數值高程模型判釋與分析區域地質與構造:以海岸山脈北段為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 台灣造山帶形成於歐亞板塊與菲律賓海板塊的斜向弧-陸碰撞,自中新世晚期蓬萊造山運動之展開,台灣山脈逐步由北向南發展。位處隱沒至碰撞造山過渡帶的脊樑山脈板岩帶南段,過去為被動大陸邊緣至南中國海上的中新世沉積物,經過多相變形與淺變質作用在山脈兩翼有著不同程度的葉理發育及構造變形特徵,常作為探討早期台灣造山帶構造歷史之關鍵。然而前人提出不同的構造演化模型解釋山脈南端東緣出露的板岩構造特徵,皆缺乏熱變質約制而忽略變質作用在構造演化中的角色。
由於泥質岩類沉積物富含碳質物,本研究將採用碳質物拉曼光譜地質溫度計測定板岩的最高變質溫度,整合野外露頭構造與顯微構造觀察的分析結果,嘗試解析這些不同構造變形發生時其處於弧-陸碰撞初期之造山岩楔內的隱沒深埋情況。
本研究整合了徐乙君 (2008)在太麻里-金崙溪沿岸南北向剖面採集製作之樣本,先確認碳質物結晶度之測定結果沒有明顯受到韌性剪切行為與雷射光的不同入射方位影響,再新增南田與太麻里溪產業道路東西向剖面之樣本,共計103筆溫度資料。實驗分析所得變質溫度與野外觀察南北向構造剖面之整合,指示了太麻里地區中新世廬山層地層在構造埋深階段以「同褶皺加溫」的變形模式變質,超過盆地埋深時的加溫,再由測定岩層之變質溫度換算層厚,建立了峰變質狀態時地層於倒轉後又已有30°傾斜的褶皺變形量。而等變質溫度線在向東伸向構造變形、第二期葉理發育與向北伸向構造變形間的相對關係分析顯示,在達到變質峰值前且次生葉理為未變形狀態時,層面已受到輕微褶皺變形,搭配野外調查沒有觀察到向東伸向的偃臥褶皺出露在南北向的太麻里海灘,排除區域構造受到旋轉分量控制。本研究認為是由於向北伸向變形在向東伸向變形未結束之際加入一起作用,於葉理發育前以及變質峰值前岩層已受到南北向擠壓變形,使得野外露頭有葉理面傾角以及等變質溫度線緩於層面之地質現象。
根據RSCM量測數據及所作推論,本研究提出初期弧-陸碰撞之台灣造山帶構造演化模型:中新世廬山層隨被動大陸邊緣隱沒進入造山岩楔的過程,由底部滑脫面演變成的向東伸向逆衝褶皺帶,造成地層倒轉形成等斜偃臥褶皺;當向北伸向變形加入時,岩層透過底部加積作用進到造山楔底部,此時積累的構造荷重對等斜偃臥褶皺產生壓扁作用,同時南北向應力擠壓持續作用,直到褶皺變形導致層面與葉理面分別傾斜30°和15°時,在造山楔下方約10公里深處達到最高變質溫度,之後掘升至山脈南端東緣出露並在同高程出現~30℃的溫度差距。
摘要(英) Taiwan orogenic belt is formed by the oblique arc-continent collision between the Eurasian and Philippine Sea plates, triggering the Penglai orogeny since the late Miocene and leading to the southward propagation of the orogen. The southern part of Backbone Range slate belt (BS), located at the transition from subduction to collision, is composed by Miocene passive margin to pelagic cover series and experiences different degrees of tectonic deformation and metamorphic histories, which make it as an exceptional place to study the early tectonic history of the Taiwan orogeny. However, previous mountain building models proposed to explain this structural deformation of the southern Taiwan range lacked thermal-metamorphic constraints, thus devoid of the role of metamorphism in the orogenic processes.
As pelitic photolith is rich in carbonaceous material, the abundant slates are chosen in this study to determine their peak metamorphic temperatures through a geothermometer (Raman spectroscopy of carbonaceous material, RSCM). Together with results of macroscopic and microscopic structural observations and analyses, an attempt is made to decipher the primary thermos-tectonic trajectory of these rocks concerning the relative timing and environment of the deformation stages within the early orogenic wedge during the arc-continent collision.
In addition to the results of north-south sampling along the Taimali-Jinlun coastline by Hsu (2008) which also help confirm that both aseismic shear strain and incident angle of laser beam relative to the C-axes of carbonaceous material have an insignificant effect on CM crystallinity, new sampling is extended to the east-west Nantien and Taimali industrial roads, resulting in 103 RSCM peak temperature data in total. According to analyses of RSCM-T and macroscopic structural observation, the Miocene Lushan Formation in the southeastern BS is found to have undergone synorogenic metamorphism, and was folded with limbs tilted at ~30˚ during the peak state as suggested by the field RSCM-T isograde. Overprinting relationship among the overturned folding, main S2 foliation, and RSCM-T isograde is established, and north-vergent deformation is observed to have commenced prior to both peak metamorphism and the end of east-vergent backfolding, as evidenced in the gentler dips of RSCM-T isograde and backfolding-associated S2 foliation.
Inferred from the RSCM result, a tectonic evolution model of the Taiwan orogenic wedge growing in the early stage of arc-continent collision is proposed. Following the subduction of the Miocene Lushan Formation deep beneath the accretionary wedge, east-vergent backthrusting started to affect the rocks resulting in overturned strata within recumbent backfolds. Backfolding and formation of associated S2 foliation continued with prograde subduction and was joined with north-vergent folding before peak state metamorphism, when the rocks were incorporated into the base of the wedge through basal accretion. During the peak state at a depth of ~10 km, the overturned bedding and foliation planes observed across the north-vergent folds are deduced to be tilted at 30° and 15°. Afterwards, the slate was exhumed to the southeastern edge of the mountain range with further north-vergent folding and resulted in RSCM-T isograde folding exhibiting ~30℃ difference at the same elevation.
關鍵字(中) ★ 太麻里
★ 多相變形構造特徵
★ 脊樑山脈板岩帶
★ 碳質物拉曼光譜
關鍵字(英) ★ Taimali
★ polyphase deformation
★ Backbone Range slate belt
★ Raman spectroscopy of carbonaceous material
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiii
第一章、 緒論 1
1-1 研究目的與動機 1
1-2 論文架構 3
第二章、 地質背景 8
2-1 台灣造山帶之大地構造劃分 8
2-2 脊樑山脈南段之區域地質介紹 12
2-3 變質度與熱年代測定之前人研究 14
2-3-1 變質度測定 14
2-3-2 熱變質溫度 14
2-3-3 低溫熱定年 15
2-4 研究區域之變形模式與構造特徵 21
2-5 構造演化之變形歷史 23
第三章、 方法 29
3-1 野外調查與量測工作 29
3-1-1 中視尺度構造 29
3-1-2 岩石薄片製作 31
3-2 地質溫度計:碳質物拉曼光譜 34
3-2-1 量測對象:碳質物特性描述 34
3-2-2 碳質物拉曼光譜之構成要素 35
3-2-3 碳質物拉曼光譜之應用範圍 37
3-2-4 碳質物拉曼光譜的量測與溫度解算 38
3-3 薄片觀察與分析 41
3-3-1 岩石組構分析 41
3-3-2 壓影纖維分析 43
第四章、 結果 45
4-1 野外構造觀察與描述 45
4-2 拉曼光譜分析結果 52
4-3 微構造觀察與描述 65
第五章、 討論 68
5-1 影響拉曼光譜分析結果之因素 68
5-1-1 韌性剪切對碳質物結構之影響 68
5-1-2 雷射入射方向誘發溫度差異 71
5-2 太麻里海岸一帶之RSCM-T解釋 74
5-2-1 RSCM-T分布之於變形模式的意義 74
5-2-2 RSCM-T等度線與構造變形之關係 76
5-2-3 RSCM-T等度線與葉理之關係 81
5-2-4 構造變形與葉理形成之關聯性 82
5-2-5 各構造變形相與RSCM-T形成順序之小結 85
5-3 RSCM-T所制約之構造變形與地體構造演化的相關性 85
5-3-1 旋轉效應所致之影響 85
5-3-2 兩期構造變形時間發生重疊 86
5-4 構造演化模型 90
第六章、 結論 94
參考文獻 95
附錄 各樣本拉曼光譜測量結果 103
參考文獻 Aerden, D. G. A. M. (1996). The pyrite-type strain fringes from Lourdes (France): indicators of Alpine thrust kinematics in the Pyrenees. Journal of Structural Geology, 18(1), 75-91. doi: 10.1016/0191-8141(95)00084-q
Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D., & Wallis, S. (2010). Extending the applicability of the Raman carbonaceous‐material geothermometer using data from contact metamorphic rocks. Journal of metamorphic Geology, 28(9), 895-914.
Beyssac, O., Bollinger, L., Avouac, J. P., & Goffé, B. (2004). Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth and Planetary Science Letters, 225(1-2), 233-241. doi: 10.1016/j.epsl.2004.05.023
Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M., & Rouzaud, J.-N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 59, 2267-2276. doi: 10.1016/S1386-1425(03)00070-2
Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J. (2002). Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of metamorphic Geology, 20(9), 859-871.
Beyssac, O., Rouzaud, J. N., Goffe, B., Brunet, F., & Chopin, C. (2002). Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contributions to Mineralogy Petrology, 143(1), 19-31.
Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y. G., Chan, Y. C., & Goffé, B. (2007). Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6). doi: 10.1029/2006tc002064
Bucher, K., & Grapes, R. (2011). Petrogenesis of metamorphic rocks (8th edition). Springer-Verlag, Berlin, Heidelberg.
Buseck, P. R., & Beyssac, O. (2014). From Organic Matter to Graphite: Graphitization. Elements, 10(6), 421-426. doi: 10.2113/gselements.10.6.421
Chang, C. P. (2001). Reconstruction de la croissance d′une chaine de montagnes: le sud de taiwan (Doctoral dissertation, Paris 6).
Chang, C. P., Angelier, J., & Lu, C. Y. (2009). Polyphase deformation in a newly emerged accretionary prism: Folding, faulting and rotation in the southern Taiwan mountain range. Tectonophysics, 466(3-4), 395-408. doi: 10.1016/j.tecto.2007.11.002
Chen, C. T., Chan, Y. C., Beyssac, O., Lu, C. Y., Chen, Y. G., Malavieille, J., Steven B. Kidder & Sun, H. C. (2019). Thermal History of the Northern Taiwanese Slate Belt and Implications for Wedge Growth During the Neogene Arc‐Continent Collision. Tectonics, 38(9), 3335-3350. doi: 10.1029/2019tc005604
Chen, C. T., Lo, C. H., Wang, P. L., & Lin, L. H. (2022). Extensional mountain building along convergent plate boundary: Insights from the active Taiwan mountain belt. Geology, 50(11), 1245-1249. doi: 10.1130/g50311.1
Chen, C. T., Chan, Y. C., Lo, C. H., Malavieille, J., Lu, C. Y., Tang, J. T., & Lee, Y. H. (2018). Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history. Journal of Asian Earth Sciences, 152, 80-90. doi: 10.1016/j.jseaes.2017.11.030
Chen, W. S., Yeh, J. J., & Syu, S. J. (2019). Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56-69.
Conand, C., Mouthereau, F., Ganne, J., Lin, A. T. S., Lahfid, A., Daudet, M., Giletycz S., Mesalles L., & Bonzani, M. (2020). Strain Partitioning and Exhumation in Oblique Taiwan Collision: Role of Rift Architecture and Plate Kinematics. Tectonics, 39(4). doi: 10.1029/2019tc005798
Dahlen, F., & Barr, T. D. (1989). Brittle frictional mountain building: 1. Deformation and mechanical energy budget. Journal of Geophysical Research: Solid Earth, 94(B4), 3906-3922.
Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural geology of rocks and regions. John Wiley & Sons.
Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy Petrology, 40(3), 259-274.
Durney, D., & Ramsay, J. G. (1973). Incremental strains measured by syntectonic crystal growths. In. Gravity tectonics., 67-96.
Ellis, M. A. (1986). The determination of progressive deformation histories from antitaxial syntectonic crystal fibres. Journal of Structural Geology, 8(6), 701-709.
Fisher, D. M., Lu, C. Y., & Chu, H. T. (2002). Taiwan Slate Belt: Insights into the ductile interior of an arc-continent collision. Special Paper of the Geological Society of America, 358, 93-106.
Fisher, D. M., Willett, S., En-Chao, Y., & Clark, M. B. (2007). Cleavage fronts and fans as reflections of orogen stress and kinematics in Taiwan. Geology, 35(1).
Fuller, C. W., Willett, S. D., Fisher, D., & Lu, C. Y. (2006). A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1-4), 1-24. doi: 10.1016/j.tecto.2006.05.018
Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: a low-temperature deformation geothermometer. Journal of Structural Geology, 26(8), 1521-1529.
Glodny, J., Lohrmann, J., Echtler, H., Gräfe, K., Seifert, W., Collao, S., & Figueroa, O. (2005). Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the South-Central Chilean forearc. Earth and Planetary Science Letters, 231(1-2), 23-39. doi: 10.1016/j.epsl.2004.12.014
Gool, J. A. v., & Cawood, P. A. (1994). Frontal vs. basal accretion and contrasting particle paths in metamorphic thrust belts. Geology, 22(1), 51-54.
Henry, D. G., Jarvis, I., Gillmore, G., & Stephenson, M. (2019). Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198, 102936. doi: https://doi.org/10.1016/j.earscirev.2019.102936
Hirth, G., & Tullis, J. (1992). Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14(2), 145-159. doi: https://doi.org/10.1016/0191-8141(92)90053-Y
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16.
Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., & Xia, K. Y. (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1-2), 31-51.
Huang, C. Y., Yuan, P. B., & Tsao, S. J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288. doi: 10.1130/b25527.1
Kedar, L., Bond, C. E., & Muirhead, D. (2020). Carbon ordering in an aseismic shear zone: Implications for Raman geothermometry and strain tracking. Earth and Planetary Science Letters, 549. doi: 10.1016/j.epsl.2020.116536
Kirilova, M., Toy, V., Rooney, J. S., Giorgetti, C., Gordon, K. C., Collettini, C., & Takeshita, T. (2018). Structural disorder of graphite and implications for graphite thermometry. Solid Earth, 9(1), 223-231. doi: 10.5194/se-9-223-2018
Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., & Goffé, B. (2010). Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22(5), 354-360. doi: 10.1111/j.1365-3121.2010.00956.x
Lee, Y. H., Chen, C. C., Liu, T. K., Ho, H. C., Lu, H. Y., & Lo, W. (2006). Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt — From accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters, 252(3-4), 413-422. doi: 10.1016/j.epsl.2006.09.047
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. doi: 10.1046/j.1365-2117.2003.00215.x
Lu, C. Y., Chang, K. J., Malavieille, J., Chan, Y. C., Chang, C. P., & Lee, J. C. (2001). Structural evolution of the southeastern Central Range, Taiwan. Western Pacific Earth Sciences, 1(2), 213-226.
Malavieille, J., Dominguez, S., Lu, C.-Y., Chen, C.-T., & Konstantinovskaya, E. (2021). Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158(1), 84-103. doi: 10.1017/S0016756819000645
Malavieille, J., & Trullenque, G. (2009). Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics, 466(3-4), 377-394. doi: 10.1016/j.tecto.2007.11.016
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C. Y., Liu, C. S., ... & Crew, A. S. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211.
Mesalles, L., Mouthereau, F., Bernet, M., Chang, C.-P., Tien-Shun Lin, A., Fillon, C., & Sengelen, X. (2014). From submarine continental accretion to arc-continent orogenic evolution: The thermal record in southern Taiwan. Geology, 42(10), 907-910. doi: 10.1130/g35854.1
Nibourel, L., Berger, A., Egli, D., Luensdorf, N. K., & Herwegh, M. (2018). Large vertical displacements of a crystalline massif recorded by Raman thermometry. Geology, 46(10), 879-882. doi: 10.1130/g45121.1
Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics. Springer-Verlag, Berlin Heidelberg.
Pelletier, B., & Hu, H. (1984). New structural data along two transects across the southern half of the Central Range of Taiwan. Mem. Geol. Soc. China, 6, 1-19.
Powell, C. M. (1979). A morphological classification of rock cleavage. Tectonophysics, 58(1-2), 21-34.
Ramsay, J. G., & Huber, M. I. (1983). The Techniques of Modern Structural Geology, v.1: Strain analysis: Academic Press, London, 307p
Reed, D. L., Lundberg, N., Liu, C. S., & Kuo, B. Y. (1992). Structural relations along the margins of the off-shore Taiwan accretionary wedge: Implications for accretion and crustal kinematics. Acta Geologica Taiwanica, 30, 105-122.
Shan, Y., Nie, G., Ni, Y., & Chang, C. P. (2014). Structural analysis of a newly emerged accretionary prism along the Jinlun-Taimali coast, southeastern Taiwan: From subduction to arc-continent collision. Journal of Structural Geology, 66, 248-260. doi: 10.1016/j.jsg.2014.06.002
Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., & Chen, Y. G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research, 112(B11). doi: 10.1029/2006jb004824
Simoes, M., Beyssac, O., & Chen, Y. G. (2012). Late Cenozoic metamorphism and mountain building in Taiwan: A review. Journal of Asian Earth Sciences, 46, 92-119. doi: 10.1016/j.jseaes.2011.11.009
Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. (2002). The eastern Tonale fault zone: A ′natural laboratory′ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology, 24, 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
Suppe, J. (1980). A retrodeformable cross section of northern Taiwan. Proc. Geol. Soc. China, 23, 46-55.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21–33.
Takagi, H., Ishii, K., & Kanagawa, K. (1996). Pressure fringes and pressure shadows indicative of progressive deformation. The Journal of the Geological Society of Japan, 102(3), IX-X. doi: 10.5575/geosoc.102.IX
Teng, L. S. (1992). Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petroleum Geology Taiwan, 27, 1-19. doi: 353.61
Teng, L. S., & Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332.
Van Der Pluijm, B.A. and Marshak, S. (2004) Earth Structure: An Introduction to Structural Geology and Tectonics. 2nd Edition, WW Norton, New York. Ch6, Ch9.
Willett, S. D., Fisher, D., Fuller, C., En-Chao, Y., & Chia-Yu, L. (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11). doi: 10.1130/g19702.1
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59. doi: https://doi.org/10.1016/S0040-1951(96)00297-1
Yuan, Y., Zhu, W., Mi, L., Zhang, G., Hu, S., & He, L. (2009). “Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 26(7), 1152-1162.

喬建新、趙紅格、 王海然 (2012) 裂變徑跡熱年代學方法、應用及其研究展望。地質與資源,第21卷,第3期,第308-312頁。
徐乙君 (2008) 利用微構造分析太麻里地區的變形歷史。國立臺灣大學地質科學研究所碩士論文,共123頁。
郭真 (2015) 裂變徑跡法原理及其在盆地分析中的應用。地下水,第3期,第12-16頁。
郭麗莉 (1992) 來義─太麻裡溪以南頁岩中伊利石結晶度之研究。經濟部中央地質調查所彙刊,第8號,第99-114頁。
陳肇夏 、王京新 (1995) 台灣變質相圖說明第二版。經濟部中央地質調查所特刊,第2號,共51頁。
賴紅玉、劉麗萍、張永明、張照錄 (2020) 低溫熱年代學在褶皺沖斷帶中的應用。山東理工大學學報:自然科學版,第6期,共7頁。
胡賢能、詹新甫 (1984) 臺灣南迴鐵路沿線地區板岩系地層之構造研究。經濟部中央地質調查所特刊,第3號,第25-43頁。
指導教授 陳致同(Chih‐Tung Chen) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明