博碩士論文 110223065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:18.224.54.96
姓名 張文杰(Wen-Chieh Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用溫和水相方式將formate Dehydrogenase封入Zn-MOF-74以還原二氧化碳
(Encapsulating Formate Dehydrogenase into Zn-MOF-74 via a Mild Water-based Approach for Reduction of CO2)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 二氧化碳對地球暖化以及氣候變遷有重大的影響,而如何處理過量的二氧化碳則成了迫在眉睫的問題。近年利用蛋白質酵素(如甲酸脫氫酶等)進行二氧化碳的固定化,將無機的二氧化碳轉化成有機生物物質,為一項重要研究課題。然而酵素具有不穩定性,回收再利用性不高,因而限制了酵素的應用性。將酵素固定在固體載體上是一項常見提高穩定性的做法,而金屬有機骨架材料(MOFs)作為新興的多孔材料,能夠形成穩定的微型環境來保護酵素,具有空間侷限性能有效避免酵素失活,另外因為其高孔隙率、多樣的合成條件和可控制的結構等優勢,非常具有作為酵素固定化載體的潛力。
而本實驗室在2015年首次開發的原位創新合成法,成功在室溫且水相的環境中,將過氧化氫酶(CAT)封裝於類沸石咪唑骨架材料(ZIF-90)中,便是金屬有機骨架材料應用於酵素固定化的例子,利用金屬有機骨架材料的孔洞性,允許受質進入材料催化的同時又可以防止大分子蛋白質水解酶的作用。除酵素固定化之外,金屬有機骨架材料因其具有高表面積、可調孔徑和低熱容量的特性,使其成為應用於碳捕獲與儲存(CCS)的焦點。在已知的金屬有機骨架材料中,MOF-74類型的金屬有機骨架材料更因為其開放的金屬位點而表現出高度的二氧化碳吸附性能。
本篇論文研究,再次利用原位創新合成法,成功在生物友善且水相環境的環境下將甲酸脫氫酶(FDH)包覆於Zn-MOF-74中。同時,甲酸脫氫酶包封在Zn-MOF-74中,提升了酵素對酸鹼耐受性,使其於非活性範圍之pH值,例如飽和二氧化碳水溶液的pH = 6.1之下仍保有活性,且因為六邊形通道及開放的金屬位點,使被包封的酵素活性相較於未包封的酵素來的更佳,活性的差異可以來到200 %至300 %之多。
摘要(英) Carbon dioxide (CO2) has led to global warming and climate change, making sustainable development crucial in chemistry. Enzymes such as formate dehydrogenase (FDH) are essential for efficient CO2 fixation, converting it into organic biomaterials. indeed, enzyme instability and reusability limitations present challenges that impede practical applications. However, ongoing research seeks to surmount these obstacles and unleash the potential of enzymes for a more sustainable future. One effective approach to enhance enzyme stability is immobilizing enzymes on solid carriers. Metal-organic frameworks (MOFs), known for their emerging porous materials, create stable microenvironments that shield enzymes and prevent denaturation. Additionally, MOFs offer advantages such as high porosity, diverse synthesis conditions, and tunable structures, making them exceptionally promising carriers for enzyme immobilization.
In our laboratory, we have pioneered an innovative one-pot method to encapsulate catalase (CAT) enzyme within Zeolite Imidazolate Framework-90 (ZIF-90) in mild water conditions. This remarkable example of enzyme immobilization with MOFs has significantly improved enzyme stability and reusability. Moreover, MOFs, such as MOF-74, exhibit outstanding CO2 adsorption even in humid conditions, showing great potential for carbon capture and storage applications.
This research study utilized a rapid de novo synthesis method to encapsulate FDH within Zn-MOF-74 under mild aqueous conditions. Notably, this encapsulation process improves the enzyme′s acid-base tolerance, enabling it to remain active even at pH levels outside its non-active range, such as the pH = 6.1 of saturated carbon dioxide aqueous solution. The hexagonal channels and open metal sites of Zn-MOF-74 significantly enhance enzyme activity compared to the unencapsulated form, resulting in a remarkable three-fold increase in activity.
關鍵字(中) ★ 金屬有機骨架材料
★ 二氧化碳捕獲與儲存
★ 甲酸脫氫酶
★ Zn-MOF-74
★ 原位創新合成法
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第 1 章 緒論 1
1.1 有機金屬骨架材料(Metal Organic Frameworks, MOFs) 1
1.2 金屬之有機金屬骨架材料-74 (MOF-74) 3
1.3 酵素固定化 5
1.4 二氧化碳(Carbon dioxide) 7
1.5 研究目的 10
第 2 章 實驗部分 11
2.1 化學藥品 11
2.2 實驗儀器 13
2.2.1 實驗使用儀器 13
2.2.2 實驗鑑定儀器 14
2.3 實驗儀器之原理 15
2.3.1 X 射線粉末繞射儀 15
2.3.2 場發射掃描式電子顯微鏡 17
2.3.3 紫外/可見光譜儀 18
2.3.4 感應耦合電漿質譜分析儀 19
2.4 酵素與激素 20
2.4.1 甲酸脫氫酶 20
2.4.2 蛋白酶 K 21
2.5 實驗步驟 22
2.5.1 金屬有機骨架材料-74(Zn-MOF-74)之合成 22
2.5.2 金屬有機骨架材料-74 (Zn-MOF-74) 包覆酵素的合成 22
2.5.3 偵測蛋白質濃度 (Bradford Assay) 23
2.5.4 十二烷基硫酸鈉聚丙醯胺膠體電泳 (SDS-PAGE) 24
2.5.5 偵測甲酸脫氫酶之活性 26
2.5.6 偵測金屬有機骨架材料包覆甲酸脫氫酶之活性 28
第 3 章 結果與討論 30
3.1 FDH@Zn-MOF-74之鑑定 30
3.1.1 X 射線粉末繞射圖譜分析 30
3.1.2 FDH@Zn-MOF-74合成步驟順序探討 33
3.1.3 Bradford蛋白質含量測試 34
3.1.4 掃描式電子顯微鏡影像分析 35
3.1.5 十二烷基硫酸鈉聚丙醯胺膠體電泳 36
3.2 FDH@Zn-MOF-74之活性實驗 37
3.2.1 甲酸脫氫酶之活性測試 37
3.2.2 Zn-MOF-74之UV吸收值 38
3.2.3 FDH@Zn-MOF-74之活性測試 42
3.2.4 FDH@Zn-MOF-74 於 Tris 緩衝水溶液之穩定性 43
第 4 章 結論以及未來展望 44
參考文獻 45
參考文獻 1. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
2. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
3. Furukawa, H.; Cordova, K. E.; O′Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
4. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
5. Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C., Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews 2016, 85 (3), 280.
6. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle Iii, T.; Bosch, M.; Zhou, H.-C., Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews 2014, 43 (16), 5561-5593.
7. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
8. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie 1985, 24, 1026-1040.
9. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
10. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
11. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
12. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B.; De Vos, D., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21, 2580-2582.
13. Parnham, E. R.; Morris, R. E., Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research 2007, 40 (10), 1005-1013.
14. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-42.
15. Xu, G.; Nie, P.; Dou, H.; Ding, B.; Li, L.; Zhang, X., Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today 2017, 20 (4), 191-209.
16. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov, M. R.; Saiz, E., Metal-Organic Framework ZIF-8 Films As Low-κ Dielectrics in Microelectronics. Chemistry of Materials 2013, 25 (1), 27-33.
17. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
18. Hartmann, M., Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chemistry of Materials 2005, 17 (18), 4577-4593.
19. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
20. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
21. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K., Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7 (49), 44507-44531.
22. Kim, H.; Hong, C. S., MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification. CrystEngComm 2021, 23 (6), 1377-1387.
23. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O′Keeffe, M.; Yaghi, O. M., Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society 2005, 127 (5), 1504-1518.
24. Zhou, W.; Wu, H.; Yildirim, T., Enhanced H2 Adsorption in Isostructural Metal−Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical Society 2008, 130 (46), 15268-15269.
25. Queen, W. L.; Hudson, M. R.; Bloch, E. D.; Mason, J. A.; Gonzalez, M. I.; Lee, J. S.; Gygi, D.; Howe, J. D.; Lee, K.; Darwish, T. A.; James, M.; Peterson, V. K.; Teat, S. J.; Smit, B.; Neaton, J. B.; Long, J. R.; Brown, C. M., Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemical Science 2014, 5 (12), 4569-4581.
26. Rowsell, J. L.; Yaghi, O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 2006, 128 (4), 1304-15.
27. McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R., Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc). Journal of the American Chemical Society 2012, 134 (16), 7056-7065.
28. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O′Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M., Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336 (6084), 1018-23.
29. Wei, T. H.; Wu, S. H.; Huang, Y. D.; Lo, W. S.; Williams, B. P.; Chen, S. Y.; Yang, H. C.; Hsu, Y. S.; Lin, Z. Y.; Chen, X. H.; Kuo, P. E.; Chou, L. Y.; Tsung, C. K.; Shieh, F. K., Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nat Commun 2019, 10 (1), 5002.
30. Wang, L. J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M., Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals. Inorganic Chemistry 2014, 53 (12), 5881-5883.
31. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
32. Hsu, P.-H.; Chang, C.-C.; Wang, T.-H.; Lam, P. K.; Wei, M.-Y.; Chen, C.-T.; Chen, C.-Y.; Chou, L.-Y.; Shieh, F.-K., Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Applied Materials & Interfaces 2021, 13 (44), 52014-52022.
33. Koeller, K. M.; Wong, C. H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-40.
34. van Dongen, S. F.; Elemans, J. A.; Rowan, A. E.; Nolte, R. J., Processive catalysis. Angew Chem Int Ed Engl 2014, 53 (43), 11420-8.
35. Strohmeier, G. A.; Pichler, H.; May, O.; Gruber-Khadjawi, M., Application of designed enzymes in organic synthesis. Chem Rev 2011, 111 (7), 4141-64.
36. Longo, M. A.; Combes, D., Analysis of the thermal deactivation kinetics of α-chymotrypsin modified by chemoenzymatic glycosylation. In Progress in Biotechnology, Ballesteros, A.; Plou, F. J.; Iborra, J. L.; Halling, P. J., Eds. Elsevier: 1998; Vol. 15, pp 135-140.
37. Franssen, M. C.; Steunenberg, P.; Scott, E. L.; Zuilhof, H.; Sanders, J. P., Immobilised enzymes in biorenewables production. Chem Soc Rev 2013, 42 (15), 6491-533.
38. Agostinelli, E.; Belli, F.; Tempera, G.; Mura, A.; Floris, G.; Toniolo, L.; Vavasori, A.; Fabris, S.; Momo, F.; Stevanato, R., Polyketone polymer: a new support for direct enzyme immobilization. J Biotechnol 2007, 127 (4), 670-8.
39. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C., Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
40. Liang, J.; Liang, K., Biocatalytic Metal–Organic Frameworks: Prospects Beyond Bioprotective Porous Matrices. Advanced Functional Materials 2020, 30 (27), 2001648.
41. Xia, H.; Li, N.; Zhong, X.; Jiang, Y., Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications. Frontiers in Bioengineering and Biotechnology 2020, 8.
42. Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications Frontiers in bioengineering and biotechnology [Online], 2020, p. 695. PubMed. http://europepmc.org/abstract/MED/32695766
https://doi.org/10.3389/fbioe.2020.00695
https://europepmc.org/articles/PMC7338372
https://europepmc.org/articles/PMC7338372?pdf=render (accessed 2020).
43. Anwar, M. N.; Iftikhar, M.; Khush Bakhat, B.; Sohail, N. F.; Baqar, M.; Yasir, A.; Nizami, A. S., Sources of Carbon Dioxide and Environmental Issues. In Sustainable Agriculture Reviews 37: Carbon Sequestration Vol. 1 Introduction and Biochemical Methods, Inamuddin; Asiri, A. M.; Lichtfouse, E., Eds. Springer International Publishing: Cham, 2019; pp 13-36.
44. Sun, S.; Sun, H.; Williams, P. T.; Wu, C., Recent advances in integrated CO2 capture and utilization: a review. Sustainable Energy & Fuels 2021, 5 (18), 4546-4559.
45. Armstrong, K.; Styring, P., Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction. Frontiers in Energy Research 2015, 3.
46. Kolbe, H., Ueber Synthese der Salicylsäure. Justus Liebigs Annalen der Chemie 1860, 113 (1), 125-127.
47. Mohammad, A. F.; El‐Naas, M. H.; Suleiman, M. I.; Musharfy, M. A., Optimization of a Solvay-Based Approach for CO2 Capture. International Journal of Chemical Engineering and Applications 2016, 7, 230-234.
48. Meessen, J., Urea synthesis. Chemie Ingenieur Technik 2014, 86 (12), 2180-2189.
49. Kruper, W. J.; Dellar, D. D., Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. The Journal of Organic Chemistry 1995, 60 (3), 725-727.
50. Saravanan, A.; Senthil kumar, P.; Vo, D.-V. N.; Jeevanantham, S.; Bhuvaneswari, V.; Anantha Narayanan, V.; Yaashikaa, P. R.; Swetha, S.; Reshma, B., A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science 2021, 236, 116515.
51. Sakakura, T.; Choi, J.-C.; Yasuda, H., Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6), 2365-2387.
52. Nataly Echevarria Huaman, R.; Xiu Jun, T., Energy related CO2 emissions and the progress on CCS projects: A review. Renewable and Sustainable Energy Reviews 2014, 31, 368-385.
53. Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M. M., A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews 2014, 43 (23), 8049-8080.
54. Kusakabe, K.; Kuroda, T.; Murata, A.; Morooka, S., Formation of a Y-Type Zeolite Membrane on a Porous α-Alumina Tube for Gas Separation. Industrial & Engineering Chemistry Research 1997, 36 (3), 649-655.
55. Rochelle, G. T., Amine Scrubbing for CO2 Capture. Science 2009, 325 (5948), 1652-1654.
56. Criado, Y. A.; Arias, B.; Abanades, J. C., Calcium looping CO2 capture system for back-up power plants. Energy & Environmental Science 2017, 10 (9), 1994-2004.
57. Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P. S.; Fuss, S.; Galindo, A.; Hackett, L. A.; Hallett, J. P.; Herzog, H. J.; Jackson, G.; Kemper, J.; Krevor, S.; Maitland, G. C.; Matuszewski, M.; Metcalfe, I. S.; Petit, C.; Puxty, G.; Reimer, J.; Reiner, D. M.; Rubin, E. S.; Scott, S. A.; Shah, N.; Smit, B.; Trusler, J. P. M.; Webley, P.; Wilcox, J.; Mac Dowell, N., Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 2018, 11 (5), 1062-1176.
58. Moss, M.; Reed, D. G.; Allen, R. W. K.; Styring, P., Integrated CO2 Capture and Utilization Using Non-Thermal Plasmolysis. Frontiers in Energy Research 2017, 5.
59. Weiland, R. H.; Dingman, J. C.; Cronin, D. B., Heat Capacity of Aqueous Monoethanolamine, Diethanolamine, N-Methyldiethanolamine, and N-Methyldiethanolamine-Based Blends with Carbon Dioxide. Journal of Chemical & Engineering Data 1997, 42 (5), 1004-1006.
60. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 724-781.
61. Bragg, W.; Thomson, J. In Mr Bragg, Diffraction of Short Electromagnetic Waves, etc. 43, Proceedings of the Cambridge Philosophical Society: Mathematical and physical sciences, Cambridge Philosophical Society: 1914; p 43.
62. Epp, J., 4 - X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Hübschen, G.; Altpeter, I.; Tschuncky, R.; Herrmann, H.-G., Eds. Woodhead Publishing: 2016; pp 81-124.
63. Mohammed, A.; Abdullah, A. In Scanning electron microscopy (SEM): A review, Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018; pp 7-9.
64. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. Springer Science & Business Media: 2013.
65. Berberan-Santos, M., Beer′s law revisited. Journal of Chemical Education 1990, 67 (9), 757.
66. Thomas, R., Practical guide to ICP-MS: a tutorial for beginners. 2013.
67. Yang, J.-i.; Lee, S. H.; Ryu, J.-Y.; Lee, H. S.; Kang, S. G., A Novel NADP-Dependent Formate Dehydrogenase From the Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Frontiers in Microbiology 2022, 13.
68. Tishkov, V. I.; Popov, V. O., Catalytic mechanism and application of formate dehydrogenase. Biochemistry (Moscow) 2004, 69 (11), 1252-1267.
69. Cheng, F.; Wei, L.; Wang, C.; Xue, Y.; Zheng, Y., [Formate dehydrogenase and its application in biomanufacturing of chiral chemicals]. Sheng Wu Gong Cheng Xue Bao 2022, 38 (2), 632-649.
70. Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H., Proteinase K from Tritirachium album Limber. Eur J Biochem 1974, 47 (1), 91-7.
71. Pähler, A.; Banerjee, A.; Dattagupta, J. K.; Fujiwara, T.; Lindner, K.; Pal, G. P.; Suck, D.; Weber, G.; Saenger, W., Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin. Embo j 1984, 3 (6), 1311-4.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明