參考文獻 |
[1] N. Li, Q. Jiang, F. Wang, P. Cui, J. Xie, J. Li, S. Wu, and D. M. Barbieri, "Comparative Assessment of Asphalt Volatile Organic Compounds Emission from field to laboratory," J. Clean. Prod. 278(2021)123479.
[2] H. Rajabi, M. H. Mosleh, P. Mandal, A. L. Langton, and M. Sedighi, "Emissions of volatile organic compounds from crude oil processing–Global emission inventory and environmental release," Sci. Total Environ. 727(2020)138654.
[3] G. Korotcenkov, S. d. Han, and J. R. Stetter, "Review of Electrochemical Hydrogen Sensors," Chem Rev. 109(2009)1402.
[4] T. Aldhafeeri, M. K. Tran, R. Vrolyk, M. Pope, and M. Fowler, "A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives," Inventions. 5(2020)28.
[5] X. Yan, Y. Wu, R. Li, C. Shi, R. Moro, Y. Ma, and L. Ma, "High-Performance UV-Assisted NO2 Sensor Based on ChemicalVapor Deposition Graphene at Room Temperature," ACS Omega. 4(2019)14179.
[6] I. A. Ashari, A. P. Widodo, and S. Suryono, "The Monitoring System for Ammonia Gas (NH3) Hazard Detection in the Livestock Environment uses Inverse Distance Weight Method," 2019 Fourth International Conference on Informatics and Computing (ICIC).
[7] W. Zhang, Q. Li, C. Wang, J. Ma, C. Wang, H. Peng, and Y. Wen, "High sensitivity and selectivity chlorine gas sensors based on 3D open porous SnO2 synthesized by solid-state method," Ceram. Int. 45(2019)20566.
[8] D. Yao, Y. Wang, and H. Li, "Silver clusters based sensor for Low content formaldehyde detection in colorimetric and fluorometric dual Mode," Sens. Actuators B Chem. 305(2020)127451.
[9] S. J. Young, and Z. D. Lin, "Acetone gas sensors composed of carbon nanotubes with adsorbed Au nanoparticles on plastic substrate," Microsyst. Technol. 24(2018)3973.
[10] V. Davamani, M. Deepasri, E. Parameswari, S. Arulmani, S. P, Sebastian, and T. Llakia, "Chemistry of Indoor Pollutants and Their Impacts on Human Health,"Pure Appl. Chem. 21(2020)40.
[11] S. J. Young, Y. H. Liu, Z. D. Lin, K. Ahmed, M. N. I. Shiblee, S. Romanuik, P. K. Sekhar, T. Thundat, ., Nagahara, S. Arya, R. Ahmed, H. Furukawa, and A. Khosla, "Multi-Walled Carbon Nanotubes Decorated with Silver Nanoparticles for Acetone Gas Sensing at Room Temperature," J. Electrochem. Soc. 167(2020)167519.
[12] R. Alice, B. John, and A. R. Kumar, "A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures," Inorg. Chem. Commun. 133(2021)108893.
[13] M. Serafini, M. Tessarolo, F. Mariani, I. Gualandi, F. Decataldo, L. Possanzini, B, Fraboni, D,Tonelli, and E, Scavetta, "A Wearable Electrochemical Gas Sensor for Ammonia Detection," Sensors. 21(2021)7905.
[14] Y. Wu, B. Yao, C. Yu and Y. Rao "Optical Graphene Gas Sensors Based on Microfibers: A Review," Sensors. 18(2018)941.
[15] D. D. O. Henriquez, I. Cho, H. Yang, J. Choi, M. Kang, K. S. Chang, C. B. Jeong, S. W. Han, and I. Park, "Pt Nanostructures Fabricated by Local Hydrothermal Synthesis for Low-Power Catalytic-Combustion Hydrogen Sensors," Appl. Nano Mater. 4(2021)7.
[16] Z. Li, Z. Yao , A. A. Haidry, T. Plecenik, L. Xie, L. Sun, and Q. Fatima, "Resistive-type hydrogen gas sensor based on TiO2: A review," Int J Hydrogen Energ. 43(2018)21114.
[17] C. Han, X. Li, C. Shao, X. Li, J. Ma, X. Zhang, and Y. Liu, "Composition-controllable p-CuO/n-ZnO hollow nanofibers for high- T performance H2S detection," Sens. Actuators B Chem. 285(2019)495.
[18] Y. Qin, Y. Wang, and Y. Liu1, "Vertically aligned silicon nanowires with rough surface and its NO2 sensing properties," J. Mater. Sci. Mater. Electron. 27(2016)11319.
[19] A. Bielański, J. Dereń, and J. Haber, "Electric conductivity and catalytic activity of semiconducting oxide catalysts," Nature 179 (1957) 668.
[20] N. Taguchi , "Gas detecting element and method of making it," Google Patents 1972.
[21] A. Gurlo, "Interplay between O2 and SnO2 : Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen," ChemPhysChem. 7(2006)2041.
[22] P. G. Harrison, and M. J. Willett, "Tin oxide surfaces. Part 20.—Electrical properties of tin(IV) oxide gel: nature of the surface species controlling the electrical conductance in air as a function of temperature," J . Chem. Soc., Faraday Trans. 85(1989)1921.
[23] H. J. Kim, and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sens. Actuators B Chem. 192(2014)607.
[24] J. A. Barnard and T. W. Honeyman, "The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction," Proc. Math. Phys. Eng. Sci. 279(1964)236.
[25] C. Samanta, A. Ghatak, A. K. Raychaudhurim and B. Ghosh, "ZnO/Si nanowires heterojunction array based nitric Oxide (NO) gas sensor with noise limited detectivity approaching 10 ppb," Nanotechnology. 30(2019)305501.
[26] L. Lin, D. Liu, Q. Chen, H. Zhoua, and J. Wu, "A vertical tip–tip contact silicon nanowire array for gas sensing," Nanoscale. 8(2016)17757.
[27] D. Liu, L. Lin, Q. Chen, H. Zhou, and J. Wu, "Low power consumption gas sensor created from silicon nanowires/TiO2 core-shell heterojunctions," ACS Sens. 10(2017)1491.
[28] A. M. Alwan, H. R. Abed, and A. A, Yousif, "Effect of the Deposition Temperature on Ammonia Gas Sensing Based on SnO2/Porous Silicon," Plasmonics, 16(2021)501.
[29] W. Wang, S. Ma, X. Liu, Y. Zhao, H. Li, Y. Li, X. Ningc, L. Zhaob, and J. Zhuanga, "NO2 gas sensor with excellent performance based on thermally modified nitrogen-hyperdoped silicon," Sens. Actuators B Chem. 354(2022)131193.
[30] F. R. González, G. G. Salgado, E. Rosendo, T. Díaz, F. N. Caballero, A. Coyopol, R. Romano, A. Luna1, K. Monfil, and E. Gastellou, "Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity,"Sensors. 20(2020)4942.
[31] L. Song, L. Luo, Y. Xi, J. Song, Y. Wang, L. Yang, A. Wang, Y. Chen, N. Han, and F. Wang, "Reduced Graphene Oxide-Coated Si Nanowires for Highly Sensitive and Selective Detection of Indoor Formaldehyde,"Nanoscale Res. Lett. 14(2019)97.
[32] S. B. Wang, Y. F. Huang, S. Chattopadhyay, S. J. Chang, R. S. Chen, C. W. Chong, M. S. Hu, L.C. Chen, and K. H. Chen, "Surface plasmon-enhanced gas sensing in single gold-peapodded silica nanowires," NPG Asia Mater. 5(2013)e49.
[33] Y. Qina, Z. Cuia, T. Zhanga, and Diao Liua, "Polypyrrole shell (nanoparticles)-functionalized silicon nanowires array with enhanced NH3-sensing response," Sens. Actuators B. 258(2018)246.
[34] J. H. Bang, M. S. Choi, A. Mirzaei, W. Oum, S. Han, S. S. Kim, and H. W. Kim, "Porous Si/SnO2 nanowires heterostructures for H2S gas sensing," Ceram. Int. 46(2020)604.
[35] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, "Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion," Int. J. Heat Mass Transf. 82(2015)267.
[36] Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T.Y. Wei, and Z. L. Wang, "Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,"Adv. Mater. 22(2010)3327.
[37] L. B. Ahmed, S. Naama, A. Keffous, A. H. Bey, and T. Hadjersi, "H2 sensing properties of modified silicon nanowires," Prog. Nat. Sci. 25(2015)101.
[38] J. Baeka, B. Janga, M. H. Kima, W. Kima, J. Kima, H. J. Rima, S. Shinb, T. Leeb, S. Choa, and W. Lee, "High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays," Sens. Actuators B Chem. 256(2018)465.
[39] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection,"Appl. Mater. Interfaces. 9(2017)28766.
[40] H. Zou, G. Dai, A. C. Wang, X. Li, S.L. Zhang, W. Ding, L.Zhang, Y. Zhang, and Z. L. Wang, "Alternating Current Photovoltaic Effect," Adv. Mater. 32(2020)1907249.
[41] W. Yang, J. Chen, Y. Zhang, Y. Zhang, J. H. He, and X. Fang, "Silicon-Compatible Photodetectors:Trends to Monolithically Integrate Photosensors with Chip Technology," Adv. Funct. Mater. 18(2019)1808182.
[42] N. Kumar, and S. Chand, "Analysis of rectifying metal-semiconductor interface using impedance spectroscopy at low temperatures," Physica B Condens. Matter. 599(2020)412547.
[43] K. Lotfy, "Effect of Variable Thermal Conductivity during the Photothermal Diffusion Process of Semiconductor Medium," Silicon. 11(2019)1863.
[44] M. Ahamed, M. S. AlSalhi, and M.K.J. Siddiqui, "Silver nanoparticle applications and human health," Clin. Chim. Acta, 411(2010)1841.
[45] F. P. G. D. Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, "Semiconductor quantum dots: Technological progress and future challenges,"Science. 373(2021)6555.
[46] C. Jia, Z. Lin, Y. Huang, and X. Duan, "Nanowire Electronics: From Nanoscale to Macroscale," Chem. Rev. 119(2019)9047.
[47] Q. Xue, Y. Peng, L. Cao, Y. Xia, J. Liang, C. C. Chen, M. Li, and T. Hang, "Ultralow Set Voltage and Enhanced Switching Reliability for Resistive Random-Access Memory Enabled by an Electrodeposited Nanocone Array," ACS Appl. Mater. Interfaces. 14(2022)25710.
[48] Xiuling Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D: Appl. Phys. 41 (2008) 193001.
[49] D. Hu, X. Ren, H. Fu, Y. Wang, X. Feng, and H. Li, "Constructing highly rough skin layer of thin film (nano) composite polyamide membranes to enhance separation performance: A review," J Appl Polym Sci. 139(2022)e52692.
[50] K. Wang, J. Y. Park, Akriti, and L. Dou, "Two-dimensional halide perovskite quantum-well emitters: A critical review, " EcoMat. 3(2021)e12104.
[51] N. Fukata, T. Subramani, W. Jevasuwan, M. Dutta, and Y. Bando, "Functionalization of Silicon Nanostructures for Energy-Related Applications," Small, 13(2017)1701713.
[52] Y. Yang, W. Yuan, W. Kang, Y. Ye, Q. Pan, X. Zhang, Y. Ke, C. Wang, Z. Qiu and Y. Tang, "A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective," Sustain. Energy Fuels, 4(2020)1577.
[53] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F. P. G. Fengler, T. Mittmann, C. Richter, S. Slesazeck, T. Mikolajick, and W. M. Weber, "A Silicon Nanowire Ferroelectric Field-Effect Transistor," Adv. Electron. Mater. 6(2020)1901244.
[54] J. Xiao, J. Zhao, G. Liu, M. T. Cole, S. Zhou, K. Chen, X. Liu, Z. Li, C. Li, and Q. Dai, "Stable Field Emission from Vertically Oriented SiC Nanoarrays," Nanomaterials. 11(2021)3025.
[55] A. Chandra, S. Giri, B. Das, S. Ghosh, S. Sarkar, and K. K. Chattopadhyay, "NIR photodetector based on p-silicon nanowires/n-cadmium sulfide nanoscale junctions," Appl. Surf. Sci. 548 (2021)149256.
[56] T. Yang, Y. Liu, H. Wang, Y. Duo, B. Zhang, Y. Ge, H. Zhang, and W. Chen, "Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors," J. Mater. Chem. C. 8(2020)7272.
[57] G. W. C. Kumarage, and E. Comini, "Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing," Chemosensors. 9(2021)197.
[58] T. Zhou, X. Liu, R. Zhang, Y.Wang, and T. Zhang, "Shape control and selective decoration of Zn2SnO4 nanostructures on 1D nanowires: Boosting chemical–sensing performances, " Sens. Actuators B Chem. 290(2019)210.
[59] P. R. Godse, A. T. Mane, Y. H. Navale, S. T. Navale, R. N. Mulik, and V. B. Patil, "Hydrothermally grown 1D ZnO nanostructures for rapid detection of NO2 gas," SN Applied Sciences. 3(2021)360.
[60] G. Gupta, S. D. Thammaiah, and L. K. Nanver, "Investigation of Pd/MoOx/n-Si diodes for bipolar transistor and light-emitting device applications," J. Appl. Phys. 128(2020)055703.
[61] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F. P. G. Fengler, T.Mittmann, C. Richter, S. Slesazeck, T. Mikolajick, and W. M. Weber, "A Silicon Nanowire Ferroelectric Field-Effect Transistor," Adv. Electron. Mater. 6(2020)1901244.
[62] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv. Mater. 5(2003)15.
[63] H. Yu, Y. Tian, M. Dirican, Do. Fang, C. Yan, J. Xie, D. Jia, Y. Liu, C. Li, M.Cui, H. Liu, G. Chen, X. Zhang, and J. Taoa, "Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels," Carbohydr. Polym. 273(2021)118539.
[64] M. Zhang, H. Ling, W. Zhang, H. Bian, H. Lin, T. Wang, Z. Lia, and A. Meng, "Preparation, superior field emission properties and first principles calculation of electronic structure of SiC nanowire arrays on Si substrate," Mater Charact. 180 (2021) 111413.
[65] L. Balaghi, S. Shan, I. Fotev, F. Moebus, R. Rana, T. Venanzi, R. Hübner, T. Mikolajick, H. Schneider, M. Helm, A. Pashkin, and E. Dimakis, "High electron mobility in strained GaAs nanowires," Nat. Commun. 12(2021)6642.
[66] M.i Hasan, M. F. Huq, and Z. H. Mahmood, "A review on electronic and optical properties of silicon nanowire and its different growth techniques," SpringerPlus. 2(2013)151.
[67] J. H. Lee, and R. E. Geer, "Templated Si-based nanowires via solid-liquid- solid (SLS) and vapor-liquid-solid (VLS) growth: Novel growth mode, synthesis, morphology control, characteristics, and electrical transport,"Cutting Edge Nanotechnology. 2010.
[68] T.Nguyen, C. H. Hsu, D. H. Lien, and Y. S. Su, "Economical Silicon Nanowire Growth via Cooling Controlled Solid–Liquid–Solid Mechanism," Adv. Mater. Interfaces. (2022) 2202247.
[69] S. N. Mohammad, "Investigation of the oxide-assisted growth mechanism for nanowire growth and a model for this mechanism," J. Vac. Sci. Technol. B. 26(2008)1993.
[70] X. Li, and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Appl. Phys. Lett. 77(2000)2572.
[71] S. Chattopadhyay, X. Li, and P. W. Bohnb, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching," J. Appl. Phys. 91(2002)6134.
[72] K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, "Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution," Chem. Eur. J. 12(2006)7942.
[73] T. QIU, X.L. WU, G.G. SIU, and P. K. CHU, "Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites," J. Electron. Mater. 35(2006)1879.
[74] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching," Curr Appl Phys. 13(2013)717.
[75] A. Mirzaeia, S. Y. Kangb, S. W. Choic, Y. J. Kwonb, M. S. Choib, J. H. Bangb, S. S. Kimd, and H. W. Kima, "Fabrication and gas sensing properties of vertically aligned Si nanowires," Appl. Surf. Sci. 427(2018)215.
[76] Y. Qin, Y. Jiang, and L. Zhao, "Modulation of Agglomeration of Vertical Porous Silicon Nanowires and the Effect on Gas-Sensing Response," Adv. Eng. Mater. 20(2017)1700893.
[77] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gosele, "Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon," J. Phys. Chem. C. 114(2010)10683.
[78] J. Kim, H. Han, Y. H. Kim, S. H. Choi, J. C. Kim, and W. Lee, "Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires," ACS Nano. 5(2011)3222.
[79] B.Tian, P. Xie, T. J. Kempa, D. C. Bell, and C. M. Lieber, "Single-crystalline kinked semiconductor nanowiresuperstructures," Nat. Nanotechnol. 4(2009)824.
[80] G. Shen, B. Liang, X. Wang, P. C. Chen, and C. Zhou, "Indium Oxide Nanospirals Made of Kinked Nanowires," ACS Nano. 5(2011)2155.
[81] S. Li, X. Zhang, L. Zhang, and M. Gao, "Twinning-induced kinking of Sb-doped ZnO nanowires," Nanotechnology. 21(2010)435602.
[82] G. Sandu, J. A.Osses, M. Luciano, D. Caina, A. Stopin, D. Bonifazi, J. F. Gohy, A. Silhanek, I. Florea, M. Bahri, O. Ersen, P. Lecler̀e, S. Gabriele, A. Vlad, and S. Melinte, "Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etching," Nano Lett. 19(2019)7681.
[83] Y. Chen, L. Li, C. Zhang, C. C. Tuan, X. Chen, J. Gao, and C. P. Wong, "Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching," Nano Lett. 17(2017)1014.
[84] T. K. Adhila, H. Elangovan, S. John, K. Chattopadhyay, and H. C. Barshilia, "Engineering the Microstructure of Silicon Nanowires by Controlling the Shape of the Metal Catalyst and Composition of the Etchant in a Two-Step MACE Process: An In-Depth Analysis of the Growth Mechanism," Langmuir. 36(2020)9388.
[85] T. K. Adhilaa, H. Elangovanc, K. Chattopadhyay, and H. C. Barshilia, "Kinked silicon nanowires prepared by two-step MACE process: Synthesis strategies and luminescent properties," Mater. Res. Bull. 140(2021)111308.
[86] G. Sandu, M. Coulombier, V. Kumar, H. G. Kassa, I. Avram, R. Ye, A. Stopin, D. Bonifazi, J. F. Gohy, P. Leclère, X. Gonze, T. Pardoen, A. Vlad, and S. Melinte, "Kinked silicon nanowires-enabled interweaving electrodeconfiguration for lithium-ionbatteries," Sci. Rep. 8(2018)9794.
[87] Z. Jiang, Q. Qing, P.Xie, R. Gao, and C. M. Lieber, "Kinked p−n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording," Nano Lett. 12(2012)1711.
[88] P. Serre, M. Mongillo, P. Periwal, T. Baron, and C. Ternon, "Percolating silicon nanowire networks with highly reproducible electrical properties," Nanotechnology. 26(2015)015201.
[89] S. F. madlul, N. K. Mahan, E. M. Ali, and A. N. Abd, "Synthesis of CdS:Cu5% thin films by chemical method based on silicon for gas sensor applications," Materials Today: Proceedings. 25(2021)5800.
[90] D. H. Kim, W. Lee, and J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale. 10(2018)17705.
[91] M. Triplett, H. Nishimura, M. Ombaba, V. J. Logeeswarren, M. Yee, K. G. Polat, J. Y. Oh, T. Fuyuki, F. Léonard, and M. S. Islam, "High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication," Nano Res. 7(2014)998.
[92] S. C. Shiu, H. J. Syu, S. C. Hung, and C. F. Lin, "Transfer of Silicon Nanowires onto Alien Substrates by Controlling Direction of Metal-Assisted Etching," proceeding of 10th IEEE International Conference. (2010)474.
[93] J. Son, and H. Lee, "Contact-Area-Changeable CMP Conditioning for Enhancing Pad Lifetime," Appl. Sci. 11(2021)3521.
[94] S.Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials," Nano Lett. 213(2013)4393.
[95] C. C. Lin, Y. J. Chuang, W. H. Sun, C. Cheng, Y. T. Chen, Z. L. Chen, C. H. Chien, and F. H. Ko, "Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs," Microelectron Eng. 145(2015)128.
[96] F. Baia, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Appl. Surf. Sci. 273(2013)107.
[97] S. G. Kirtania, A. W. Elger, and M. R. Hasan, A. Wisniewska, K. Sekhar, T. Karacolak, and P. K. Sekhar, "Flexible Antennas: A Review," Micromachines. 11(2020)847.
[98] M. G. Stanford, K. Yang, Y. Chyan, C. Kittrell, and J. M. Tour, "Laser-Induced Graphene for Flexible and Embeddable Gas Sensors," ACS Nano. 13(2019)3474.
[99] M. A. Yildirim, and K. Teker, "Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector," J. Alloys Compd. 868(2021)159255.
[100] L. R. Shobin, and S. Manivannan, "Carbon nanotubes on paper: Flexible and disposable chemiresistors," Sens. Actuators B Chem. 220(2015)1178.
[101] Y. Kim, A.Tsao, D. H. Lee, and R. Maboudian, "Solvent-induced formation of unidirectionally curved and tilted Si nanowires during metal-assisted chemical etching," J. Mater. Chem. C. 1(2013)220.
[102] Y. Chen, C. Zhang, L. Li, C. C. Tuan, X. Chen, J. Gao, Y. He, and C. P. Wong, "Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires," Nanoscale Res. Lett. 12(2017)185.
[103] 國家衛生研究院 National Health Research Institutes 2.0版.
[104] L. Sigg, and U. Lindauer, "Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide," Environ. Pollut. 206(2015)582.
[105] F. Yana, G. Shen, X. Yang, T. Qia, J. Suna, X. Lic, and M. Zhang, "Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor," Appl. Surf. Sci. 479(2019)1141.
[106] S. Kim, S. Park, S. Park, and Chongmu Lee, "Acetone sensing of Au and Pd-decorated WO3 nanorod sensors," Sens. Actuators B Chem. 209(2015)180.
[107] Y. Xiong, Z. Zhu, D. Ding, W. Lu, and Q. Xue, "Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor," Appl. Surf. Sci.15(2018)114.
[108] J. Hu, J. Yang, W. Wang, Y. Xue, Y. Sun, P. Li, K. Lian, W. Zhang, L. Chen, J. Shi, and Y. Chen, "Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection," Mater. Res. Bull. 102(2018)294.
[109] Y. Qin, Y. Wang, Y. Liu, and X. Zhang, "KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application," Nanotechnology. 27(2016)465502.
[110] K. Lan, Z. Wang, X. Yang, J. Wei, Y. Qin, and G. Qin, "Flexible silicon nanowires sensor for acetone detection on plastic substrates," Nanotechnology. 33(2022)155502. |