參考文獻 |
第7章 參考資料
1. Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews 2020, 49 (23), 8790-8839.
2. Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A., Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12 (6), 1074.
3. Ding, J.-F.; Zhang, Y.-T.; Xu, R.; Zhang, R.; Xiao, Y.; Zhang, S.; Bi, C.-X.; Tang, C.; Xiang, R.; Park, H. S.; Zhang, Q.; Huang, J.-Q., Review on lithium metal anodes towards high energy density batteries. Green Energy & Environment 2022.
4. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
5. Kai Liu, Y. L., Dingchang Lin, Allen Pei, Yi Cui, Materials for lithium-ion battery safety. Science advances 2018, 4(6), 9820.
6. Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H., Solid-state lithium batteries: safety and prospects. EScience 2022, 2 (2), 138-163.
7. Dirican, M.; Yan, C.; Zhu, P.; Zhang, X., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports 2019, 136, 27-46.
8. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews 2016, 116 (1), 140-162.
9. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry 2009, 182 (8), 2046-2052.
10. Zhan, H.; Wu, M.; Wang, R.; Wu, S.; Li, H.; Tian, T.; Tang, H., Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanoparticles for lithium metal batteries. Polymers 2021, 13 (15), 2468.
11. Li, W.; Liu, X.; Xie, Q.; You, Y.; Chi, M.; Manthiram, A., Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study. Chemistry of Materials 2020, 32 (18), 7796-7804.
12. Zheng, Y.; Xu, N.; Chen, S.; Liao, Y.; Zhong, G.; Zhang, Z.; Yang, Y., Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Applied Energy Materials 2020, 3 (3), 2837-2845.
13. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X., Review on polymer-based composite electrolytes for lithium batteries. Frontiers in Chemistry 2019, 7, 522.
14. Das, D.; Chandrasekaran, A.; Venkatram, S.; Ramprasad, R., Effect of crystallinity on Li adsorption in polyethylene oxide. Chemistry of Materials 2018, 30 (24), 8804-8810.
15. Young, W.-S.; Kuan, W.-F.; Epps, T. H., Block copolymer electrolytes for rechargeable lithium batteries. Journal of Polymer Science Part B: Polymer Physics 2014, 52 (1), 1-16.
16. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
17. W Liu, X. K. Z., F Wu and Y Xiang, A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. IOP conference series 2017, 23, 012036.
18. Zhang, Y.; Yang, B.; Li, K.; Hou, D.; Zhao, C.; Wang, J., Electrospun porous poly(tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC Advances 2017, 7 (89), 56183-56193.
19. Aravindan, V.; Vickraman, P., Nanoparticulate AlO (OH) n filled polyvinylidenefluoride-co-hexafluoropropylene based microporous membranes for lithium ion batteries. Journal of Renewable and Sustainable Energy 2009, 1 (2).
20. Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; Chen, L., Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Advanced Energy Materials 2015, 5 (24), 1501082.
21. Zhu, L.; Li, J.; Jia, Y.; Zhu, P.; Jing, M.; Yao, S.; Shen, X.; Li, S.; Tu, F., Toward high performance solid‐state lithium‐ion battery with a promising PEO / PPC blend solid polymer electrolyte. International Journal of Energy Research 2020, 44 (13), 10168-10178.
22. Wang, C.; Zhang, H.; Li, J.; Chai, J.; Dong, S.; Cui, G., The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources 2018, 397, 157-161.
23. Luo, K.; Yi, L.; Chen, X.; Yang, L.; Zou, C.; Tao, X.; Li, H.; Wu, T.; Wang, X., PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. Electroanalytical Chemistry 2021, 895, 115462.
24. Liang, Y. F.; Xia, Y.; Zhang, S. Z.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Wu, J. B.; Tu, J. P., A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) -poly(propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta 2019, 296, 1064-1069.
25. Manthiram, X. Y. a. A., A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials 2021, 34, 282-300.
26. Fu, K., Gong, Y., Dai, J., Gong, A., Han, X., Yao, Y., & Hu, L, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences 2016, 113 (26), 7094-7099.
27. Tambelli, C. C., Bloise, A. C., Rosario, A. V., Pereira, E. C., Magon, C. J., & Donoso, J. P., Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochimica Acta 2002, 47 (11), 1677–1682.
28. Ji, K.-S.; Moon, H.-S.; Kim, J.-W.; Park, J.-W., Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. Journal of Power Sources 2003, 117 (1-2), 124-130.
29. Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Letters 2016, 16 (1), 459-465.
30. Liu, H.; Xu, J.; Guo, B.; He, X., Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceramics International 2014, 40 (9), 14105-14110.
31. Feng, J.; Wang, L.; Chen, Y.; Wang, P.; Zhang, H.; He, X., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 2021, 8 (1), 2.
32. Xu, Z.; Yang, T.; Chu, X.; Su, H.; Wang, Z.; Chen, N.; Gu, B.; Zhang, H.; Deng, W.; Zhang, H.; Yang, W., Strong Lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery. ACS Applied Materials & Interfaces 2020, 12 (9), 10341-10349.
33. Liang, C. C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. Journal of The Electrochemical Society 1973, 120 (10), 1289.
34. Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X., Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Applied Materials & Interfaces 2019, 11 (1), 784-791.
35. Liu, W.; Lin, D.; Sun, J.; Zhou, G.; Cui, Y., Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016, 10 (12), 11407-11413.
36. Liu, L.; Zhang, D.; Xu, X.; Liu, Z.; Liu, J., Challenges and development of composite solid electrolytes for all-solid-state lithium batteries. Chemical Research in Chinese Universities 2021, 37 (2), 210-231.
37. Yu, T.; Yang, X.; Yang, R.; Bai, X.; Xu, G.; Zhao, S.; Duan, Y.; Wu, Y.; Wang, J., Progress and perspectives on typical inorganic solid-state electrolytes. Journal of Alloys and Compounds 2021, 885, 161013.
38. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46 (41), 7778-7781.
39. Zhu, Y.; He, X.; Mo, Y., Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Applied Materials & Interfaces 2015, 7 (42), 23685-23693.
40. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews 2014, 43 (13), 4714-4727.
41. O′Callaghan, M. P., Lynham, D. R., Cussen, E. J., Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm−Lu). Chemistry of Materials 2006, 18, 4681-4689.
42. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
43. Samson, A. J., Hofstetter, K., Bag, S., & Thangadurai, V., A bird′s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science 2019, 12 (10), 2957-2975.
44. Thompson, T.; Wolfenstine, J.; Allen, J. L.; Johannes, M.; Huq, A.; David, I. N.; Sakamoto, J., Tetragonal vs. cubic phase stability in Al–free Ta doped Li7La3Zr2O12 (LLZO). Journal of Materials Chemistry A 2014, 2 (33), 13431-13436.
45. Salimkhani, H.; Yurum, A.; Gursel, S. A., A glance at the influence of different dopant elements on Li7La3Zr2O12 garnets. Ionics 2021, 27 (9), 3673-3698.
46. Allen, J. L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources 2012, 206, 315-319.
47. Meesala, Y.; Liao, Y.-K.; Jena, A.; Yang, N.-H.; Pang, W. K.; Hu, S.-F.; Chang, H.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M.; Guo, X.; Liu, R.-S., An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. Journal of Materials Chemistry A 2019, 7 (14), 8589-8601.
48. Kuhn, A.; Narayanan, S.; Spencer, L.; Goward, G.; Thangadurai, V.; Wilkening, M., Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced Li7 spin-lattice relaxation NMR spectroscopy. Physical Review B 2011, 83 (9), 094302.
49. Rettenwander, D.; Blaha, P.; Laskowski, R.; Schwarz, K.; Bottke, P.; Wilkening, M.; Geiger, C. A.; Amthauer, G., DFT study of the role of Al(3+) in the fast ion-conductor Li(7-3x) Al(3+)(x) La3Zr2O12 garnet. Chemistry of Materials 2014, 26 (8), 2617-2623.
50. Zeier, W. G., Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Trans 2014, 43 (43), 16133-16138.
51. Chen, C.; Sun, Y.; He, L.; Kotobuki, M.; Hanc, E.; Chen, Y.; Zeng, K.; Lu, L., Microstructural and electrochemical properties of Al- and Ga-Doped Li7La3Zr2O12 garnet solid electrolytes. ACS Applied Energy Materials 2020, 3 (5), 4708-4719.
52. Cheng, L.; Park, J. S.; Hou, H.; Zorba, V.; Chen, G.; Richardson, T.; Cabana, J.; Russo, R.; Doeff, M., Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. Journal of Materials Chemistry A 2014, 2 (1), 172-181.
53. Vincent, P. G. B. a. C. A., Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 1987, 225 (28-30), 918-922.
54. Metz, S.; Jiguet, S.; Bertsch, A.; Renaud, P., Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab on a Chip 2004, 4 (2), 114-120.
55. Mouraliraman, D.; Shaji, N.; Praveen, S.; Nanthagopal, M.; Ho, C. W.; Varun Karthik, M.; Kim, T.; Lee, C. W., Thermally stable PVDF-HFP-based gel polymer electrolytes for high-performance lithium-ion batteries. Nanomaterials 2022, 12 (7), 1056.
56. Yang, Y. P.; Huang, A. C.; Tang, Y.; Liu, Y. C.; Wu, Z. H.; Zhou, H. L.; Li, Z. P.; Shu, C. M.; Jiang, J. C.; Xing, Z. X., Thermal stability analysis of lithium-ion battery electrolytes based on lithium bis(trifluoromethanesulfonyl)imide-lithium difluoro(oxalato)borate dual-salt. Polymers (Basel) 2021, 13 (5), 707.
57. Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W., Temperature effect and thermal impact in lithium-ion batteries: a review. Progress in Natural Science: Materials International 2018, 28 (6), 653-666.
58. Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W., Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society 2014, 136 (20), 7395-7402.
59. Zhang, J.; Zhao, N.; Zhang, M.; Li, Y.; Chu, P. K.; Guo, X.; Di, Z.; Wang, X.; Li, H., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28, 447-454.
60. Cai, Y.; Wu, H.; Yan, W.; Yu, Z.; Ma, W.; Liu, C.; Zhang, Q.; Jia, X., A atretchable and highly conductive sulfonic pendent single-ion polymer electrolyte derived from multifunctional tri-block polyether. ACS Applied Polymer Materials 2021, 3 (6), 3254-3263.
61. Chen, L.; Xue, P.; Liang, Q.; Liu, X.; Tang, J.; Li, J.; Liu, J.; Tang, M.; Wang, Z., A single-ion polymer composite electrolyte via in situ polymerization of electrolyte monomers into a porous MOF-based fibrous membrane for lithium metal batteries. ACS Applied Energy Materials 2022, 5 (3), 3800-3809.
62. Guan, S.; Wen, K.; Liang, Y.; Xue, C.; Liu, S.; Yu, J.; Zhang, Z.; Wu, X.; Yuan, H.; Lin, Z.; Yu, H.; Li, L.; Nan, C.-W., An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes. Journal of Materials Chemistry A 2022, 10 (45), 24269-24279.
63. Guo, M.; Zhang, M.; He, D.; Hu, J.; Wang, X.; Gong, C.; Xie, X.; Xue, Z., Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochimica Acta 2017, 255, 396-404.
64. Meyer, M.; Vechambre, C.; Viau, L.; Mehdi, A.; Fontaine, O.; Mourad, E.; Monge, S.; Chenal, J.-M.; Chazeau, L.; Vioux, A., Single-ion conductor nanocomposite organic–inorganic hybrid membranes for lithium batteries. J. Mater. Chem. A 2014, 2 (31), 12162-12165.
65. Liu, X.; Liu, J.; Lin, B.; Chu, F.; Ren, Y., PVDF-HFP-based composite electrolyte membranes having high conductivity and lithium-ion transference number for lithium metal batteries. ACS Applied Energy Materials 2021, 5 (1), 1031-1040. |