參考文獻 |
1. Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414 (6861), 359-67.
2. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett. 2009, 9 (11), 3844-3847.
3. Doh, C.-H.; Park, C.-W.; Shin, H.-M.; Kim, D.-H.; Chung, Y.-D.; Moon, S.-I.; Jin, B.-S.; Kim, H.-S.; Veluchamy, A., A New SiO/C Anode Composition for Lithium-Ion Battery. J. Power Sources 2008, 179 (1), 367-370.
4. Sun, Q.; Zhang, B.; Fu, Z.-W., Lithium Electrochemistry of SiO2 Thin Film Electrode for Lithium-Ion Batteries. Appl. Surf. Sci. 2008, 254 (13), 3774-3779.
5. Howe, J. Y.; Burton, D. J.; Qi, Y.; Meyer III, H. M.; Nazri, M.; Nazri, G. A.; Palmer, A. C.; Lake, P. D., Improving Microstructure of Silicon/Carbon Nanofiber Composites as a Li Battery Anode. J. Power Sources 2013, 221, 455-461.
6. Lee, B.-S.; Son, S.-B.; Park, K.-M.; Seo, J.-H.; Lee, S.-H.; Choi, I.-S.; Oh, K.-H.; Yu, W.-R., Fabrication of Si core/C Shell Nanofibers and Their Electrochemical Performances as a Lithium-ion Battery Anode. J. Power Sources 2012, 206, 267-273.
7. Jia, T.; Zhong, G.; Lv, Y.; Li, N.; Liu, Y.; Yu, X.; Zou, J.; Chen, Z.; Peng, L.; Kang, F.; Cao, Y., Prelithiation Strategies for Silicon-based Anode in High Energy Density Lithium-Ion Battery. Green Energy Environ. 2022.
8. Lu, P.; Li, C.; Schneider, E. W.; Harris, S. J., Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films During Formation in Lithium Ion Batteries. J. Phys. Chem. 2014, 118 (2), 896-903.
9. Spotnitz, R., Simulation of Capacity Fade in Lithium-ion Batteries. J. Power Sources 2003, 113 (1), 72-80.
10. Holtstiege, F.; Wilken, A.; Winter, M.; Placke, T., Running Out of Lithium? A Route to Differentiate Between Capacity Losses and Active Lithium Losses in Lithium-ion Batteries. Phys. Chem. Chem. Phys. 2017, 19 (38), 25905-25918.
11. Huang, Z.; Deng, Z.; Zhong, Y.; Xu, M.; Li, S.; Liu, X.; Zhou, Y.; Huang, K.; Shen, Y.; Huang, Y., Progress and Challenges of Prelithiation Technology for Lithium‐ion Battery. Carbon Energy 2022, 4 (6), 1107-1132.
12. Goodenough, J. B., Cathode Materials: A Personal Perspective. J. Power Sources 2007, 174 (2), 996-1000.
13. Manthiram, A.; Goodenough, J. B., Layered Lithium Cobalt Oxide Cathodes. Nat. Energy 2021, 6 (3), 323-323.
14. Dou, F.; Shi, L.; Chen, G.; Zhang, D., Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochem. Energy Rev. 2019, 2, 149-198.
15. Goodenough, J. B.; Park, K.-S., The Li-ion Rechargeable Battery: a Perspective. JACS 2013, 135 (4), 1167-1176.
16. Geng, H.; Peng, Y.; Qu, L.; Zhang, H.; Wu, M., Structure Design and Composition Engineering of Carbon‐based Nanomaterials for Lithium Energy Storage. Adv. Energy Mater. 2020, 10 (10), 1903030.
17. Zhang, Y. F.; Zhang, N.; Hingorani, H.; Ding, N.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G.; Ge, Q., Fast‐response, Stiffness‐tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Adv. Funct. Mater. 2019, 29 (15), 1806698.
18. Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J., Integration of Graphite and Silicon Anodes for the Commercialization of High‐Energy Lithium‐ion batteries. Angew. Chem. Int. Ed. 2020, 59 (1), 110-135.
19. Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V., In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon. Nat. Nanotechnol. 2012, 7 (11), 749-756.
20. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-dependent Fracture of Silicon Nanoparticles During Lithiation. ACS nano 2012, 6 (2), 1522-1531.
21. Zhu, G.; Zhang, F.; Li, X.; Luo, W.; Li, L.; Zhang, H.; Wang, L.; Wang, Y.; Jiang, W.; Liu, H. K., Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angew. Chem. Int. Ed. 2019, 58 (20), 6669-6673.
22. Cao, C.; Abate, I. I.; Sivonxay, E.; Shyam, B.; Jia, C.; Moritz, B.; Devereaux, T. P.; Persson, K. A.; Steinrück, H.-G.; Toney, M. F., Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-ion Batteries. Joule 2019, 3 (3), 762-781.
23. Sun, Y.; Liu, N.; Cui, Y., Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries. Nat. Energy 2016, 1 (7), 1-12.
24. Jiao, M.; Wang, Y.; Ye, C.; Wang, C.; Zhang, W.; Liang, C., High-Capacity SiOx (0≤ x≤ 2) as Promising Anode Materials for Next-generation Lithium-ion Batteries. J. Alloys Compd. 2020, 842, 155774.
25. Cao, Y.; Dunlap, R.; Obrovac, M., Electrochemistry and Thermal Behavior of SiOx Made by Reactive Gas Milling. J. Electrochem. Soc. 2020, 167 (11), 110501.
26. Chen, T.; Wu, J.; Zhang, Q.; Su, X., Recent Advancement of SiOx Based Anodes for Lithium-ion Batteries. J. Power Sources 2017, 363, 126-144.
27. Zhang, L.; Deng, J.; Liu, L.; Si, W.; Oswald, S.; Xi, L.; Kundu, M.; Ma, G.; Gemming, T.; Baunack, S., Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries. Adv. Mater. 2014, 26 (26), 4527-4532.
28. Li, Y.; Qian, Y.; Zhou, J.; Lin, N.; Qian, Y., Molten-LiCl Induced Thermochemical Prelithiation of SiO x: Regulating The Active Si/O Ratio for High Initial Coulombic Efficiency. Nano Res. 2022, 15 (1), 230-237.
29. Zhang, X.; Qu, H.; Ji, W.; Zheng, D.; Ding, T.; Abegglen, C.; Qiu, D.; Qu, D., Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12 (10), 11589-11599.
30. Holtstiege, F.; Bärmann, P.; Nölle, R.; Winter, M.; Placke, T., Pre-lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries 2018, 4 (1), 4.
31. Weber, R.; Genovese, M.; Louli, A.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J., Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-free Lithium Pouch Cells Enabled by a Dual-salt Liquid Electrolyte. Nat. Energy 2019, 4 (8), 683-689.
32. Obrovac, M.; Chevrier, V., Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114 (23), 11444-11502.
33. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L., The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and its Relationship to Formation Cycling. Carbon 2016, 105, 52-76.
34. Kitada, K.; Pecher, O.; Magusin, P. C.; Groh, M. F.; Weatherup, R. S.; Grey, C. P., Unraveling the Reaction Mechanisms of SiO Anodes for Li-ion Batteries by Combining in Situ 7Li and ex Situ 7Li/29Si Solid-state NMR Spectroscopy. JACS 2019, 141 (17), 7014-7027.
35. Liu, Y.; Hanai, K.; Horikawa, K.; Imanishi, N.; Hirano, A.; Takeda, Y., Electrochemical Characterization of a Novel Si–graphite–Li2. 6Co0. 4N Composite as Anode Material for Lithium Secondary Batteries. Mater. Chem. Phys. 2005, 89 (1), 80-84.
36. Li, C.; Tu, S.; Ai, X.; Gui, S.; Chen, Z.; Wang, W.; Liu, X.; Tan, Y.; Yang, H.; Sun, Y., Stress‐Regulation Design of Lithium Alloy Electrode Toward Stable Battery Cycling. Energy Environ. Mater. 2023, 6 (1), e12267.
37. Ogata, K.; Salager, E.; Kerr, C.; Fraser, A.; Ducati, C.; Morris, A. J.; Hofmann, S.; Grey, C. P., Revealing Lithium–Silicide Phase Transformations in Nano-structured Silicon-Based Lithium Ion Batteries via in Situ NMR Spectroscopy. Nat. Commun. 2014, 5 (1), 3217.
38. Tan, T.; Lee, P.-K.; Denis, Y., Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2018, 166 (3), A5210.
39. Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y.; Fujita, T.; Chen, M., Atomic-Scale Disproportionation in Amorphous Silicon Monoxide. Nat. Commun. 2016, 7 (1), 11591.
40. Prado, A. Y.; Rodrigues, M.-T. F.; Trask, S. E.; Shaw, L.; Abraham, D. P., Electrochemical Dilatometry of Si-Bearing Electrodes: Dimensional Changes and Experiment Design. J. Electrochem. Soc. 2020, 167 (16), 160551.
41. Nagao, Y.; Sakaguchi, H.; Honda, H.; Fukunaga, T.; Esaka, T., Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering. J. Electrochem. Soc. 2004, 151 (10), A1572.
42. Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M., Analysis of SiO Anodes for Lithium-ion Batteries. J. Electrochem. Soc. 2005, 152 (10), A2089.
43. Kim, J.-H.; Park, C.-M.; Kim, H.; Kim, Y.-J.; Sohn, H.-J., Electrochemical Behavior of SiO Anode for Li Secondary Batteries. J. Electroanal. Chem. 2011, 661 (1), 245-249.
44. Reynier, Y.; Vincens, C.; Leys, C.; Amestoy, B.; Mayousse, E.; Chavillon, B.; Blanc, L.; Gutel, E.; Porcher, W.; Hirose, T., Practical Implementation of Li Doped SiO in High Energy Density 21700 Cell. J. Power Sources 2020, 450, 227699.
45. Zhang, Y.; Wu, B.; Mu, G.; Ma, C.; Mu, D.; Wu, F., Recent Progress and Perspectives on Silicon Anode: Synthesis and Prelithiation for LIBs Energy Storage. J. Energy Chem. 2022, 64, 615-650.
46. Chung, D. J.; Youn, D.; Kim, S.; Ma, D.; Lee, J.; Jeong, W. J.; Park, E.; Kim, J.-S.; Moon, C.; Lee, J. Y., Dehydrogenation-driven Li Metal-Free Prelithiation for High Initial Efficiency SiO-based Lithium Storage Materials. Nano Energy 2021, 89, 106378.
47. He, W.; Xu, H.; Chen, Z.; Long, J.; Zhang, J.; Jiang, J.; Dou, H.; Zhang, X., Regulating the Solvation Structure of Li+ Enables Chemical Prelithiation of Silicon-Based Anodes Toward High-Energy Lithium-Ion Batteries. Nano Micro Lett. 2023, 15 (1), 107.
48. Jin, L.; Shen, C.; Wu, Q.; Shellikeri, A.; Zheng, J.; Zhang, C.; Zheng, J. P., Pre‐lithiation Strategies for Next‐Generation Practical Lithium‐Ion Batteries. Adv. Sci. 2021, 8 (12), 2005031.
49. Guo, Y.; Li, X.; Wang, Z.; Guo, H.; Wang, J., Bifunctional Li6CoO4 Serving as Prelithiation Reagent and Pseudocapacitive Electrode for Lithium Ion Capacitors. J. Energy Chem. 2020, 47, 38-45.
50. Aravindan, V.; Lee, Y. S.; Madhavi, S., Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries. Adv. Energy Mater. 2017, 7 (17), 1602607.
51. Jia, T.; Zhong, G.; Lv, Y.; Li, N.; Liu, Y.; Yu, X.; Zou, J.; Chen, Z.; Peng, L.; Kang, F., Prelithiation Strategies for Silicon-Based Anode in High Energy Density Lithium-Ion Battery. Green Energy Environ. 2022.
52. Meng, Q.; Li, G.; Yue, J.; Xu, Q.; Yin, Y.-X.; Guo, Y.-G., High-Performance Lithiated SiO x Anode Obtained by a Controllable and Efficient Prelithiation Strategy. ACS Appl. Mater. Interfaces 2019, 11 (35), 32062-32068.
53. Zhou, H.; Wang, X.; Chen, D., Li‐Metal‐Free Prelithiation of Si‐Based Negative Electrodes for Full Li‐Ion Batteries. ChemSusChem 2015, 8 (16), 2737-2744.
54. Kim, H. J.; Choi, S.; Lee, S. J.; Seo, M. W.; Lee, J. G.; Deniz, E.; Lee, Y. J.; Kim, E. K.; Choi, J. W., Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Nano Lett. 2016, 16 (1), 282-288.
55. Zhao, J.; Lu, Z.; Wang, H.; Liu, W.; Lee, H.-W.; Yan, K.; Zhuo, D.; Lin, D.; Liu, N.; Cui, Y., Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: an Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. JACS 2015, 137 (26), 8372-8375.
56. Zhao, J.; Lee, H.-W.; Sun, J.; Yan, K.; Liu, Y.; Liu, W.; Lu, Z.; Lin, D.; Zhou, G.; Cui, Y., Metallurgically Lithiated SiOx Anode with High Capacity and Ambient Air Compatibility. PNAS 2016, 113 (27), 7408-7413.
57. Zhao, J.; Sun, J.; Pei, A.; Zhou, G.; Yan, K.; Liu, Y.; Lin, D.; Cui, Y., A General Prelithiation Approach for Group IV Elements and Corresponding Oxides. Energy Storage Mater. 2018, 10, 275-281.
58. Park, K.; Yu, B. C.; Goodenough, J. B., Li3N as a Cathode Additive for High‐Energy‐Density Lithium‐Ion Batteries. Adv. Energy Mater. 2016, 6 (10), 1502534.
59. Sun, Y.; Li, Y.; Sun, J.; Li, Y.; Pei, A.; Cui, Y., Stabilized Li3N for Efficient Battery Cathode Prelithiation. Energy Storage Mater. 2017, 6, 119-124.
60. Park, H.; Yoon, T.; Kim, Y.-U.; Ryu, J. H.; Oh, S. M., Li2NiO2 as a Sacrificing Positive Additive for Lithium-Ion Batteries. Electrochim. Acta 2013, 108, 591-595.
61. Zhang, L.; Dose, W. M.; Vu, A. D.; Johnson, C. S.; Lu, W., Mitigating the Initial Capacity Loss and Improving the Cycling Stability of Silicon Monoxide Using Li5FeO4. J. Power Sources 2018, 400, 549-555.
62. Scott, M.; Whitehead, A.; Owen, J., Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li‐Ion Cell. J. Electrochem. Soc. 1998, 145 (5), 1506.
63. Shen, Y.; Zhang, J.; Pu, Y.; Wang, H.; Wang, B.; Qian, J.; Cao, Y.; Zhong, F.; Ai, X.; Yang, H., Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Lett. 2019, 4 (7), 1717-1724.
64. Shen, Y.; Qian, J.; Yang, H.; Zhong, F.; Ai, X., Chemically Prelithiated Hard‐Carbon Anode for High Power and High Capacity Li‐Ion Batteries. Small 2020, 16 (7), 1907602.
65. Wang, G.; Li, F.; Liu, D.; Zheng, D.; Luo, Y.; Qu, D.; Ding, T.; Qu, D., Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11 (9), 8699-8703.
66. Jang, J.; Kang, I.; Choi, J.; Jeong, H.; Yi, K. W.; Hong, J.; Lee, M., Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High‐Capacity Lithium‐Ion Battery Anodes. Angew. Chem. Int. Ed. 2020, 59 (34), 14473-14480.
67. Chen, S.; Wang, Z.; Wang, L.; Song, Z.; Yang, K.; Zhao, W.; Liu, L.; Fang, J.; Qian, G.; Pan, F., Constructing a Robust Solid–Electrolyte Interphase Layer via Chemical Prelithiation for High‐Performance SiOx Anode. Adv. Energy Sustainability Res. 2022, 3 (10), 2200083.
68. Li, Y.; Qian, Y.; Zhao, Y.; Lin, N.; Qian, Y., Revealing the Interface-Rectifying Functions of a Li-Cyanonaphthalene Prelithiation System for SiO Electrode. Sci. Bull. 2022, 67 (6), 636-645.
69. Zhang, S. S.; Xu, K.; Jow, T., EIS Study on the Formation of Solid Electrolyte Interface in Li-Ion Battery. Electrochim. Acta 2006, 51 (8-9), 1636-1640.
70. Shen, C.; Fu, R.; Xia, Y.; Liu, Z., New Perspective to Understand the Effect of Electrochemical Prelithiation Behaviors on Silicon Monoxide. RSC Adv. 2018, 8 (26), 14473-14478. |