博碩士論文 110223052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.220.191.122
姓名 吳承霖(Cheng-Lin Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發具D-π-A 結構型態之雙光子螢光探針 與其雙態螢光性質探討
(Development of Two-Photon Fluorescence Probes with D-π-A Structure and Investigation of Dual-State Emission Properties)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文成功引入苯碸(Phenyl Sulfone)、惡二唑(Oxadiazole)及二苯基甲酮(Benzophenone)等單元為拉電子基團並合成出不同系列之不對稱螢光分子,鑑定其在溶液態、固態之線性光學性質及溶液態非線性光學性質,同時也嘗試將這些結構用作螢光探針分子開發。經一系列實驗並分析其光學性質與分子結構間的關聯性後,我們可歸納出以下結論:
(1)以D-π-A形式設計出的不對稱螢光分子於溶液態有良好量子產率與明
顯溶劑效應,此種分子結構適合用作發展螢光探針。
(2)以Phenyl Sulfone合成出之螢光分子相較於以Oxadiazole合成出之螢
光分子有較明顯溶劑效應,也有較大的斯托克斯位移(Stokes
Shift),在作為對極性敏感螢光探針應用上有更優秀的潛力。
(3)以Oxadiazole合成出之螢光分子相較於以Phenyl Sulfone合成出之螢
光分子於非線性光學性質上,有更高之雙光子吸收截面。
(4)以Benzophenone作為拉電子結構單元合成出之螢光分子明顯於固態
時有良好的螢光量子產率。
(5)於細胞實驗中證實,分子上的烷氧鏈過多可能會導致細胞標定胞器的
專一性不好,而Succinimidyl Ester 官能基團可以成功應用於免疫
染色顯影。
摘要(英) Several series of novel asymmetric chromophores based on phenyl sulfone, 1,3,4-oxadiazole and benzophenone has been synthesized and investigated for their linear optical property both in solid and solution phases. The two-photon absorption properties in solution phase were also characterized based on two-photon-excited fluorescence technique.
After analyzing of the relation between the molecular structures and the obtained optical properties, the following conclusions can be drawn:
(1)Asymmetric chromophores of D-π-A type exhibit good quantum yields and significant solvent effect in solution phase. These chromophores are suitable for the development of fluorescence probes.
(2)Chromophores based on phenyl sulfone structure exhibit pronounced solvent effect and larger Stokes shift compared to those based on 1, 3, 4-oxadiazole. These chromophores can be potential polarity-sensitive fluorescence probes.
(3)Chromophores based on 1, 3, 4-oxadiazole exhibit higher two-photon cross section compared to those derived from phenyl sulfone.
(4)Chromophores based on benzophenone demonstrate high photoluminescence quantum yields in their solid state. (Фsolid about 35%-51%)
(5)In cell imaging test, it has been demonstrated that excessive amount of alkoxy chains on the structure may result in poor selectivity for labeling cellular organelles. On the other hand, the succinimidyl ester functional group has shown potentiality in immunofluorescence staining.
關鍵字(中) ★ 雙光子
★ 螢光探針
★ 雙態發射
關鍵字(英) ★ Two-Photon
★ Fluorescence probe
★ dual-state emission
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 雙光子吸收材料歷史背景與研究發展 2
1-1-1 雙光子吸收過程及原理 2
1-1-2 雙光子吸收材料之發展與應用 6
1-1-3 雙光子吸收材料分子設計及文獻回顧 10
1-1-4 時域聚焦多光子激發顯微技術(TFMPEM)介紹 13
1-2 螢光探針簡介及發展 15
1-2-1 單光子螢光探針簡介及應用 15
1-2-2 螢光探針分子設計 19
1-2-3 雙光子螢光探針之發展及優勢 23
1-3 具雙態發射性質之螢光分子簡介 27
1-3-1 雙態發射研究起源 27
1-3-2 雙態發射原理與分子設計與文獻探討 30
1-3-3 雙態發射螢光分子之應用 37
1-4 研究動機與論文架構 40
參考文獻 41
第二章 分子設計與合成 44
2-1 模型分子結構與分子設計 44
2-2 合成策略及流程 51
參考文獻 69
第三章 光學性質探討 70
3-1 前言 70
3-2 模型分子在溶液態及固態的線性光學性質 75
3-3 模型分子在溶液態之雙光子光學性質 94
3-4 結果與討論 106
第四章 細胞影像實驗 110
第五章 實驗儀器與藥品 117
5-1 合成實驗所使用之藥品及溶劑 117
5-2 光學實驗及光學儀器詳述 120
5-3 模型分子之詳細合成步驟 128
第六章 結構鑑定光譜圖 177
參考文獻 [1] Two-Photon Excitation (photometrics.com)
[2]https://downloads.micron.ox.ac.uk/lectures/micron_course_2020/lecture-14-two-photon.pdf
[3] He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N., Chem. Rev., 2008, 108, 1245-1330.
[4] He, G. S.; Yuan, L.; Cheng, N.; Bhawalkar, J. D.; Prasad, P. N.;Brott, L. L.; Clarson, S. J.; Reinhardt, B. A., J. Opt. Soc. Am. B, 1997,14, 1079.
[5] Xu, C.; Webb, W. W., J. Opt. Soc. Am. B, 1996, 13, 481.
[6] Göppert-Mayer, M., Ann. Phys., 1931, 9, 273-295.
[7] Kaiser, W.; Garret, C. G. B., Phys. Rev. Lett., 1961, 7, 229-231.
[8] Peticolas, W. L.; Rieckhoff, K. E., J. Chem. Phys, 1963, 39, 1347.
[9] Qingdong Zheng, Haomiao Zhu, Shan-Ci Chen, Changquan Tang, En Ma, and Xueyuan Chen, Nat Photonics, 2013, 7, 234-239.
[10] He, G. S.; Yuan, L.; Cheng, N.; Bhawalkar, J. D.; Prasad, P. N.; Brott, L. L.; Clarson, S. J.; Reinhardt, B. A., J. Opt. Soc. Am. B., 1997, 14, 1079-1087.
[11] Parthenopoulos, D. A.; Rentzepis, P. M., Science, 1989, 245, 843-845.
[12] Wang, X.; Krebs, L. J.; Mohammed, A. N.; Pudavar, H. E.; Ghosal, S.; Liebow, C.; Nagy, A. A.; Schally, A. V.; Prasad, Pa. N., PNAS, 1999, 96, 11081-11084.

[13] https://gembared.com/blogs/musings/how-deep-does-red-and-near-infrared-wavelengths-penetrate-into-the-body-marketing-vs-science
[14] B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuang, G. S. He, and P. N. Prasad, Chem. Mater., 1998, 10, 1863.
[15] M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J.Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. M. Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu., Science, 1998, 281, 1653.
[16] Kannan, R.; Yuan, L. X.; Xu, F.; Prasad, P. N.; Dombroskie, A. G.; Reinhardt, B. A.; Baur, J. W.; Tan, L. S.; He, G. S.; Vaia, R. A., Chem. Mater. 2001, 13, 1896-1904
[17] M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, Science, 1998, 281, 1653-1656.
[18] Denk W, Strickler JH, Webb WW., Science. 1990, 248, 73–6.
[19] W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol, 2003, 21, 1369.
[20] Li-Chung Cheng, Chi-Hsiang Lien, Yong Da Sie, Yvonne Yuling Hu, Chun-Yu Lin, Fan-Ching Chien, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen, Biomedical Optics Express, 2014, 5, 2526.
[21] Lu Lu, Zhou-yue Wu, Xin Li and Feng Han., Acta Pharmacol Sinica, 2019, 40, 717-723.
[22] Jurga V., Emilie K., Hitomi S., Dmytro I. D., Nadine P., Yosuke N., and Andrey S. K., Anal. Chem. 2020, 92, 9, 6512-6520.
[23] Li Fan, Xiaodong Wang, Qi Zan, Lifang Fan, Feng Li, Yongming Yang, Caihong Zhang, Shaomin Shuang, and Chuan Dong, Anal. Chem., 2021, 93, 8019-8026.
[24] Li Fan, Xiaodong Wang, Jinyin Ge, Feng Li, Xiao Wang, Juan Juan Wang, Shaomin Shuang and Chuan Dong, Chem.Commun., 2019, 55, 4703.
[25] https://www.genome.gov/genetics-glossary/Cell
[26] Appelqvist H, Wäster P, Kågedal K, Öllinger K., J Mol Cell Biol., 2013, 5, 214-226.
[27] Nicole Fehrenbacher, MarJa Jäättelä, Cancer Res., 2005, 65, 2993-2995.
[28] Hanna Appelqvist, Petra Wa¨ster, Katarina Ka˚gedal, and Karin O¨llinger, Journal of Molecular Cell Biology., 2013, 5, 214-226.
[29] Peng Gao, Wei Pan, Na Li and Bo Tang, Chem. Sci., 2019, 10, 6035-6071.
[30] https://www.biovis.uu.se/digitalAssets/593/c_593618-l_1-k_multiphoton-mm.pdf.
[31] Junling Yin, Xiuqi Kong, and Weiying Lin, Anal. Chem., 2021, 93, 4, 2072-2081.
[32] Hoche, J.; Schmitt, H.-C.; Humeniuk, A.; Fischer, I.; Mitrić, R.; Röhr, M. I. S., Phys. Chem. Chem. Phys., 2017, 19, 25002- 25015.
[33] Jingdong Luo, Zhiliang Xie, Jacky W. Y. Lam, Lin Cheng, Haiying Chen, Chengfeng Qiu, Hoi Sing Kwok, Xiaowei Zhan, Yunqi Liu, Daoben Zhuc and Ben Zhong Tang, Chem. Commun., 2001, 1740-1741.
[34] Alexander Huber, Justin Dubbert, Tim D. Scherz, Jun.-Prof. Dr. Jens Voskuhl, Chem.Eur. J., 2023, 29, e202202481.
[35] José L. Belmonte-Vázquez, Yoarhy A. Amador-Sánchez, Lizbeth A. Rodríguez-Cortés, and Braulio Rodríguez-Molina, Chem. Mater., 2021, 33, 7160-7184.
[36] Gan Chen, Wenbo Li, Tianru Zhou, Qian Peng, Di Zhai, Hongxiang Li, Wang Zhang Yuan, Yongming Zhang, Ben Zhong Tang, Adv.Mater., 2015, 27, 4496-4501.
[37] Kumar, S.; Singh, P.; Kumar, P.; Srivastava, R.; Pal, S. K.; Ghosh, S., J. Phys. Chem. C 2016, 120, 12723- 12733
[38] Venkatramaiah, N.; Kumar, G. D.; Chandrasekaran, Y.; Ganduri, R.; Patil, S., ACS Appl. Mater. Interfaces, 2018, 10, 3838-3847.
[39] Srikanth Revoju, Anastasia Matuhina, Laura Canil, Henri Salonen, Arto Hiltunen, Antonio Abatebc and PaolaVivo, J. Mater. Chem. C, 2020, 8, 15486.
[40] Duo Xi, Yanzi Xu, Ruohan Xu, Zhi Wang, Daomeng Liu, Qifei Shen, Ling Yue, Dongfeng Dang, Ling Jie Meng, Chem. - Eur. J., 2020, 26, 2741-2748.
[41] Kuofei Li, Yunhui Zhu, Bing Yao, Yuannan Chen, Hao Deng, Qisheng Zhang, Hongmei Zhan, Zhiyuan Xie and Yanxiang Cheng, Chem. Commun., 2020, 56, 5957-5960.
[42] Xiaoqin Jia, Weixiang Han, Tanlong Xue, Di Zhao, Xiuyan Li, Jun Nie and Tao Wang, Polym. Chem., 2019, 10, 2152.
[43] Thomas Goudreault, Ze He, Yanhe Guo, Cheuk-Lam Ho, Hongmei Zhan, Qiwei Wang, Keith Yat-Fung Ho, Ka-Leung Wong, Daniel Fortin, Bing Yao, Zhiyuan Xie, Lixiang Wang, Wai-Ming Kwok, Pierre D. Harvey, and Wai-Yeung Wong, Macromolecules., 2010, 43, 7936-7949.
[44] Zhu Xiaoqin, Qian Ying , Lu Zhifeng, Front. Chem. Eng. China., 2007, 1, 381-384.
[45] Bala S, Kamboj S, Kajal A, Saini V, Prasad DN., BioMed Research International. (2):172791.
[46] T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem., 1995, 60, 7508-7510.
[47] R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam, P. E. L. G. Leclère, R. P. Sijbesma, E. W. Meijer, and A. P. H. J. Schenning, J. Am. Chem. Soc., 2009, 131, 833-843.
[48] Mengyuan Li, Zhihui Wang, Mao Liang, Liyuan Liu, Xuda Wang, Zhe Sun, and Song Xue, J. Phys. Chem. C 2018, 122, 42, 24014–24024.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明